Spaces:
Sleeping
Sleeping
| import torch | |
| import PIL.Image | |
| import gradio as gr | |
| import numpy as np | |
| from .pipeline import DDIMPipelineCustom | |
| pipeline = DDIMPipelineCustom.from_pretrained("1aurent/ddpm-mnist-conditional") | |
| def predict(steps, seed, value, guidance): | |
| generator = torch.manual_seed(seed) | |
| for i in range(1,steps): | |
| yield pipeline( | |
| generator=generator, | |
| condition=torch.tensor([value]), | |
| guidance=guidance, | |
| num_inference_steps=steps | |
| ).images[0] | |
| gr.Interface( | |
| predict, | |
| inputs=[ | |
| gr.components.Slider(1, 100, label='Inference Steps', value=20, step=1), | |
| gr.components.Slider(0, 2147483647, label='Seed', value=69420, step=1), | |
| gr.components.Slider(0, 9, label='Value', value=5, step=1), | |
| gr.components.Slider(-2.5, 2.5, label='Guidance Factor', value=1), | |
| ], | |
| outputs=gr.Image(shape=[28,28], type="pil", elem_id="output_image"), | |
| css="#output_image img {width: 256px}", | |
| title="Conditional MNIST", | |
| description="A DDIM scheduler and UNet model trained on the MNIST dataset for conditional image generation.", | |
| ).queue().launch() |