Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import gradio as gr
|
|
| 5 |
import random
|
| 6 |
import numpy as np
|
| 7 |
|
| 8 |
-
pipeline = DiffusionPipeline.from_pretrained("
|
| 9 |
|
| 10 |
def predict(steps, seed):
|
| 11 |
generator = torch.manual_seed(seed)
|
|
@@ -22,5 +22,5 @@ gr.Interface(
|
|
| 22 |
outputs=gr.Image(shape=[128,128], type="pil", elem_id="output_image"),
|
| 23 |
css="#output_image{width: 256px}",
|
| 24 |
title="Unconditional butterflies",
|
| 25 |
-
description="A DDPM scheduler and UNet model trained
|
| 26 |
).queue().launch()
|
|
|
|
| 5 |
import random
|
| 6 |
import numpy as np
|
| 7 |
|
| 8 |
+
pipeline = DiffusionPipeline.from_pretrained("1aurent/ddpm-mnist")
|
| 9 |
|
| 10 |
def predict(steps, seed):
|
| 11 |
generator = torch.manual_seed(seed)
|
|
|
|
| 22 |
outputs=gr.Image(shape=[128,128], type="pil", elem_id="output_image"),
|
| 23 |
css="#output_image{width: 256px}",
|
| 24 |
title="Unconditional butterflies",
|
| 25 |
+
description="A DDPM scheduler and UNet model trained on the MNIST dataset for unconditional image generation.",
|
| 26 |
).queue().launch()
|