Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from textwrap import dedent
|
| 6 |
+
from email import message_from_file
|
| 7 |
+
from email.header import decode_header
|
| 8 |
+
|
| 9 |
+
# select device
|
| 10 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
# load model
|
| 13 |
+
pipe = pipeline(model="1aurent/distilbert-base-multilingual-cased-finetuned-email-spam", device=device)
|
| 14 |
+
|
| 15 |
+
# fn to predict from text
|
| 16 |
+
def classify_raw(text):
|
| 17 |
+
return pipe(text, top_k=2)
|
| 18 |
+
|
| 19 |
+
# fn to predict from form inputs
|
| 20 |
+
def classify_form(mailfrom, x_mailfrom, to, reply_to, subject):
|
| 21 |
+
text = dedent(f"""
|
| 22 |
+
From: {mailfrom}
|
| 23 |
+
X-MailFrom: {x_mailfrom}
|
| 24 |
+
To: {to}
|
| 25 |
+
Reply-To: {reply_to}
|
| 26 |
+
Subject: {subject}
|
| 27 |
+
""").strip()
|
| 28 |
+
return pipe(text, top_k=2)
|
| 29 |
+
|
| 30 |
+
# helper to extract header from email
|
| 31 |
+
def get_header(message, header_name: str) -> str:
|
| 32 |
+
try:
|
| 33 |
+
for payload, _ in decode_header(message[header_name]):
|
| 34 |
+
if type(payload) == bytes:
|
| 35 |
+
payload = payload.decode(errors="ignore")
|
| 36 |
+
header = payload
|
| 37 |
+
header = header.replace("\n", " ")
|
| 38 |
+
header = header.strip()
|
| 39 |
+
return header
|
| 40 |
+
except:
|
| 41 |
+
return ""
|
| 42 |
+
|
| 43 |
+
# fn to predict from email file
|
| 44 |
+
def classify_file(file):
|
| 45 |
+
message = message_from_file(open(file.name))
|
| 46 |
+
|
| 47 |
+
return classify_form(
|
| 48 |
+
mailfrom=get_header(message, "From"),
|
| 49 |
+
x_mailfrom=get_header(message, "X-MailFrom"),
|
| 50 |
+
to=get_header(message, "To"),
|
| 51 |
+
reply_to=get_header(message, "Reply-To"),
|
| 52 |
+
subject=get_header(message, "Subject"),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
title = "Email Spam Classifier"
|
| 57 |
+
description = """
|
| 58 |
+
Spam or ham ?
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
demo = gr.Blocks()
|
| 62 |
+
|
| 63 |
+
raw_interface = gr.Interface(
|
| 64 |
+
fn=classify_raw,
|
| 65 |
+
inputs=gr.Textbox(
|
| 66 |
+
label="Formatted Email Header",
|
| 67 |
+
placeholder=dedent("""
|
| 68 |
+
From: Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>
|
| 69 |
+
X-MailFrom: Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>
|
| 70 |
+
To: net7 <net7@bde.enseeiht.fr>
|
| 71 |
+
Reply-To: Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>
|
| 72 |
+
Subject: Re: Demande d'un H24 net7
|
| 73 |
+
""").strip(),
|
| 74 |
+
),
|
| 75 |
+
outputs="json",
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
form_interface = gr.Interface(
|
| 79 |
+
fn=classify_form,
|
| 80 |
+
inputs=[
|
| 81 |
+
gr.Textbox(
|
| 82 |
+
label="From",
|
| 83 |
+
placeholder="Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>",
|
| 84 |
+
),
|
| 85 |
+
gr.Textbox(
|
| 86 |
+
label="X-MailFrom",
|
| 87 |
+
placeholder="Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>",
|
| 88 |
+
),
|
| 89 |
+
gr.Textbox(
|
| 90 |
+
label="To",
|
| 91 |
+
placeholder="net7 <net7@bde.enseeiht.fr>",
|
| 92 |
+
),
|
| 93 |
+
gr.Textbox(
|
| 94 |
+
label="Reply-To",
|
| 95 |
+
placeholder="Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>",
|
| 96 |
+
),
|
| 97 |
+
gr.Textbox(
|
| 98 |
+
label="Subject",
|
| 99 |
+
placeholder="Re: Demande d'un H24 net7",
|
| 100 |
+
),
|
| 101 |
+
],
|
| 102 |
+
outputs="json",
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
file_interface = gr.Interface(
|
| 106 |
+
fn=classify_file,
|
| 107 |
+
inputs=gr.File(
|
| 108 |
+
label="Email File",
|
| 109 |
+
file_types=[".eml"],
|
| 110 |
+
),
|
| 111 |
+
outputs="json",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
with demo:
|
| 115 |
+
gr.TabbedInterface(
|
| 116 |
+
interface_list=[
|
| 117 |
+
raw_interface,
|
| 118 |
+
form_interface,
|
| 119 |
+
file_interface
|
| 120 |
+
],
|
| 121 |
+
tab_names=[
|
| 122 |
+
"Raw Text",
|
| 123 |
+
"Form",
|
| 124 |
+
"File"
|
| 125 |
+
]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
demo.launch()
|