Spaces:
Sleeping
Sleeping
Update dependecies
Browse files- src/custom_layers.py +67 -0
- src/custom_losses.py +200 -0
- src/custom_models.py +88 -0
- src/streamlit_app.py +5 -7
src/custom_layers.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
import keras
|
| 3 |
+
|
| 4 |
+
@keras.saving.register_keras_serializable()
|
| 5 |
+
class L2Normalization(tf.keras.layers.Layer):
|
| 6 |
+
"""
|
| 7 |
+
Applies L2 normalization to the last axis of the input tensor.
|
| 8 |
+
|
| 9 |
+
This is used as a top layer in speaker embedding models before
|
| 10 |
+
cosine similarity computation.
|
| 11 |
+
"""
|
| 12 |
+
def call(self, inputs):
|
| 13 |
+
return tf.math.l2_normalize(inputs, axis=1)
|
| 14 |
+
|
| 15 |
+
def compute_output_shape(self, input_shape):
|
| 16 |
+
return input_shape
|
| 17 |
+
|
| 18 |
+
@keras.saving.register_keras_serializable()
|
| 19 |
+
class CosineLayer(tf.keras.layers.Layer):
|
| 20 |
+
"""
|
| 21 |
+
Dense layer with L2-normalized weights, for cosine similarity-based classification.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
out_features (int): Number of output features/classes.
|
| 25 |
+
use_bias (bool): Whether to use bias term.
|
| 26 |
+
name (str, optional): Layer name.
|
| 27 |
+
"""
|
| 28 |
+
def __init__(self, out_features, use_bias=False, name=None, **kwargs):
|
| 29 |
+
super().__init__(name=name, **kwargs)
|
| 30 |
+
self.out_features = out_features
|
| 31 |
+
self.use_bias = use_bias
|
| 32 |
+
|
| 33 |
+
def build(self, input_shape):
|
| 34 |
+
self.w = self.add_weight(
|
| 35 |
+
shape=(int(input_shape[-1]), self.out_features),
|
| 36 |
+
initializer='glorot_uniform',
|
| 37 |
+
trainable=True,
|
| 38 |
+
name='weights'
|
| 39 |
+
)
|
| 40 |
+
if self.use_bias:
|
| 41 |
+
self.b = self.add_weight(
|
| 42 |
+
shape=(self.out_features,),
|
| 43 |
+
initializer='zeros',
|
| 44 |
+
trainable=True,
|
| 45 |
+
name='bias'
|
| 46 |
+
)
|
| 47 |
+
else:
|
| 48 |
+
self.b = None
|
| 49 |
+
super().build(input_shape)
|
| 50 |
+
|
| 51 |
+
def call(self, inputs):
|
| 52 |
+
w_normalized = tf.math.l2_normalize(self.w, axis=0)
|
| 53 |
+
logits = tf.linalg.matmul(inputs, w_normalized)
|
| 54 |
+
if self.use_bias:
|
| 55 |
+
logits = logits + self.b
|
| 56 |
+
return logits
|
| 57 |
+
|
| 58 |
+
def compute_output_shape(self, input_shape):
|
| 59 |
+
return (input_shape[0], self.out_features)
|
| 60 |
+
|
| 61 |
+
def get_config(self):
|
| 62 |
+
base_config = super().get_config()
|
| 63 |
+
return {
|
| 64 |
+
**base_config,
|
| 65 |
+
'out_features': self.out_features,
|
| 66 |
+
'use_bias': self.use_bias
|
| 67 |
+
}
|
src/custom_losses.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
import keras
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
@keras.saving.register_keras_serializable()
|
| 6 |
+
class AdaCosLoss(tf.keras.losses.Loss):
|
| 7 |
+
"""
|
| 8 |
+
Adaptive Cosine Loss (AdaCos).
|
| 9 |
+
|
| 10 |
+
Implements the AdaCos loss function as described in:
|
| 11 |
+
"AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations"
|
| 12 |
+
(Zhang et al., 2019).
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
num_classes (int): Number of classes in the classification problem.
|
| 16 |
+
name (str, optional): Name for the loss instance.
|
| 17 |
+
"""
|
| 18 |
+
def __init__(self, num_classes=None, name="AdaCos", **kwargs):
|
| 19 |
+
super().__init__(name=name, **kwargs)
|
| 20 |
+
self.num_classes = num_classes
|
| 21 |
+
self.scale = tf.Variable(
|
| 22 |
+
np.sqrt(2) * np.log(num_classes - 1),
|
| 23 |
+
dtype=tf.float32, trainable=False
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def call(self, y_true, y_pred):
|
| 27 |
+
"""
|
| 28 |
+
Args:
|
| 29 |
+
y_true: (batch_size,) integer labels [0, num_classes-1].
|
| 30 |
+
y_pred: (batch_size, num_classes) classification cosine similarities.
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
Tensor scalar: Mean AdaCos loss over the batch.
|
| 34 |
+
"""
|
| 35 |
+
y_true = tf.cast(y_true, tf.int32)
|
| 36 |
+
y_pred = tf.clip_by_value(
|
| 37 |
+
y_pred,
|
| 38 |
+
-1.0 + tf.keras.backend.epsilon(),
|
| 39 |
+
1.0 - tf.keras.backend.epsilon()
|
| 40 |
+
)
|
| 41 |
+
# correct class mask
|
| 42 |
+
mask = tf.one_hot(y_true, depth=self.num_classes) # shape (batch_size, n_classes)
|
| 43 |
+
# get theta angles for corresponding class
|
| 44 |
+
theta_true = tf.math.acos(tf.boolean_mask(y_pred, mask)) # shape (batch_size,)
|
| 45 |
+
# compute median of 'correct' angles
|
| 46 |
+
theta_med = tf.keras.ops.median(theta_true)
|
| 47 |
+
# get non-corresponding cosine values (cos(theta) j is not yi)
|
| 48 |
+
neg_mask = tf.logical_not(mask > 0) # shape (batch_size, n_classes)
|
| 49 |
+
cos_theta_neg = tf.boolean_mask(y_pred, neg_mask) # shape (batch_size*(n_classes-1),)
|
| 50 |
+
|
| 51 |
+
neg_y_pred = tf.reshape(cos_theta_neg, [-1, self.num_classes - 1]) # shape (batch_size, n_classes-1)
|
| 52 |
+
|
| 53 |
+
B_avg = tf.reduce_mean(tf.reduce_sum(tf.math.exp(self.scale * neg_y_pred), axis=-1))
|
| 54 |
+
#B_avg = tf.cast(B_avg, tf.float32)
|
| 55 |
+
|
| 56 |
+
#with tf.control_dependencies([theta_med, B_avg]):
|
| 57 |
+
new_scale = (
|
| 58 |
+
tf.math.log(B_avg) /
|
| 59 |
+
tf.math.cos(tf.minimum(tf.constant(np.pi / 4), theta_med))
|
| 60 |
+
)
|
| 61 |
+
# keep current scale if new_scale is invalid
|
| 62 |
+
safe_scale = tf.cond(
|
| 63 |
+
tf.math.is_finite(new_scale) & (new_scale > 0),
|
| 64 |
+
lambda: new_scale,
|
| 65 |
+
lambda: self.scale
|
| 66 |
+
)
|
| 67 |
+
self.scale.assign(safe_scale)
|
| 68 |
+
logits = self.scale * y_pred
|
| 69 |
+
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=logits)
|
| 70 |
+
|
| 71 |
+
return tf.reduce_mean(loss)
|
| 72 |
+
|
| 73 |
+
def get_config(self):
|
| 74 |
+
base_config = super().get_config()
|
| 75 |
+
return {**base_config, 'num_classes': self.num_classes}
|
| 76 |
+
|
| 77 |
+
def __repr__(self):
|
| 78 |
+
return (f"{self.__class__.__name__}(num_classes={self.num_classes}, "
|
| 79 |
+
f"name='{self.name}')")
|
| 80 |
+
|
| 81 |
+
def __str__(self):
|
| 82 |
+
return self.__repr__()
|
| 83 |
+
|
| 84 |
+
@property
|
| 85 |
+
def num_classes(self):
|
| 86 |
+
return self._num_classes
|
| 87 |
+
|
| 88 |
+
@num_classes.setter
|
| 89 |
+
def num_classes(self, value):
|
| 90 |
+
if not isinstance(value, int):
|
| 91 |
+
raise TypeError(f"`num_classes` must be an int, got {type(value).__name__}")
|
| 92 |
+
if value < 2:
|
| 93 |
+
raise ValueError(f"`num_classes` must be >= 2, got {value}")
|
| 94 |
+
self._num_classes = value
|
| 95 |
+
|
| 96 |
+
@keras.saving.register_keras_serializable()
|
| 97 |
+
class AdaCosLossMargin(tf.keras.losses.Loss):
|
| 98 |
+
"""
|
| 99 |
+
Adaptive Cosine Loss with Margin (AdaCosMargin).
|
| 100 |
+
|
| 101 |
+
Extends AdaCos by introducing a fixed margin penalty for the target class logits,
|
| 102 |
+
encouraging greater separation between classes in angular (cosine) space.
|
| 103 |
+
|
| 104 |
+
Reference:
|
| 105 |
+
- AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations (Zhang et al., 2019)
|
| 106 |
+
- Large Margin Cosine Loss (CosFace): https://arxiv.org/abs/1801.09414
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
margin (float): Margin to subtract from the target class cosine similarity (0.0–1.0).
|
| 110 |
+
num_classes (int): Number of classes.
|
| 111 |
+
name (str, optional): Name for the loss.
|
| 112 |
+
"""
|
| 113 |
+
def __init__(self, margin=0.1, num_classes=None, name="AdaCosLossMargin", **kwargs):
|
| 114 |
+
super().__init__(name=name, **kwargs)
|
| 115 |
+
self.margin = margin
|
| 116 |
+
self.num_classes = num_classes
|
| 117 |
+
self.scale = tf.Variable(
|
| 118 |
+
np.sqrt(2) * np.log(num_classes - 1),
|
| 119 |
+
dtype=tf.float32, trainable=False
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
def call(self, y_true, y_pred):
|
| 123 |
+
"""
|
| 124 |
+
Args:
|
| 125 |
+
y_true: (batch_size,) integer labels [0, num_classes-1].
|
| 126 |
+
y_pred: (batch_size, num_classes) cosine similarities.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
Tensor scalar: Mean AdaCosMargin loss over the batch.
|
| 130 |
+
"""
|
| 131 |
+
batch_size = tf.shape(y_pred)[0]
|
| 132 |
+
y_true = tf.cast(y_true, tf.int32)
|
| 133 |
+
y_pred = tf.clip_by_value(
|
| 134 |
+
y_pred,
|
| 135 |
+
-1.0 + tf.keras.backend.epsilon(),
|
| 136 |
+
1.0 - tf.keras.backend.epsilon()
|
| 137 |
+
)
|
| 138 |
+
mask = tf.one_hot(y_true, depth=self.num_classes)
|
| 139 |
+
theta_true = tf.math.acos(tf.boolean_mask(y_pred, mask))
|
| 140 |
+
theta_med = tf.keras.ops.median(theta_true)
|
| 141 |
+
neg_mask = tf.cast(tf.logical_not(mask > 0), dtype=tf.float32)
|
| 142 |
+
cos_theta_neg = tf.boolean_mask(y_pred, neg_mask)
|
| 143 |
+
neg_y_pred = tf.reshape(cos_theta_neg, [batch_size, self.num_classes - 1])
|
| 144 |
+
B_avg = tf.reduce_mean(tf.reduce_sum(tf.math.exp(self.scale * neg_y_pred), axis=-1))
|
| 145 |
+
B_avg = tf.cast(B_avg, tf.float32)
|
| 146 |
+
|
| 147 |
+
with tf.control_dependencies([theta_med, B_avg]):
|
| 148 |
+
new_scale = (
|
| 149 |
+
tf.math.log(B_avg) /
|
| 150 |
+
tf.math.cos(tf.minimum(tf.constant(np.pi / 4), theta_med))
|
| 151 |
+
)
|
| 152 |
+
safe_scale = tf.cond(
|
| 153 |
+
tf.math.is_finite(new_scale) & (new_scale > 0),
|
| 154 |
+
lambda: new_scale,
|
| 155 |
+
lambda: self.scale
|
| 156 |
+
)
|
| 157 |
+
self.scale.assign(safe_scale)
|
| 158 |
+
logits = self.scale * (y_pred - self.margin * mask)
|
| 159 |
+
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=logits)
|
| 160 |
+
return tf.reduce_mean(loss)
|
| 161 |
+
|
| 162 |
+
def get_config(self):
|
| 163 |
+
base_config = super().get_config()
|
| 164 |
+
return {
|
| 165 |
+
**base_config,
|
| 166 |
+
'num_classes': self.num_classes,
|
| 167 |
+
'margin': self.margin
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
def __repr__(self):
|
| 171 |
+
return (f"{self.__class__.__name__}(margin={self.margin}, num_classes={self.num_classes}, "
|
| 172 |
+
f"name='{self.name}')")
|
| 173 |
+
|
| 174 |
+
def __str__(self):
|
| 175 |
+
return self.__repr__()
|
| 176 |
+
|
| 177 |
+
@property
|
| 178 |
+
def num_classes(self):
|
| 179 |
+
return self._num_classes
|
| 180 |
+
|
| 181 |
+
@num_classes.setter
|
| 182 |
+
def num_classes(self, value):
|
| 183 |
+
if not isinstance(value, int):
|
| 184 |
+
raise TypeError(f"`num_classes` must be an int, got {type(value).__name__}")
|
| 185 |
+
if value < 2:
|
| 186 |
+
raise ValueError(f"`num_classes` must be >= 2, got {value}")
|
| 187 |
+
self._num_classes = value
|
| 188 |
+
|
| 189 |
+
@property
|
| 190 |
+
def margin(self):
|
| 191 |
+
return self._margin
|
| 192 |
+
|
| 193 |
+
@margin.setter
|
| 194 |
+
def margin(self, value):
|
| 195 |
+
if not isinstance(value, (float, int)):
|
| 196 |
+
raise TypeError(f"`margin` must be a float or int, got {type(value).__name__}")
|
| 197 |
+
value = float(value)
|
| 198 |
+
if not (0.0 <= value <= 1.0):
|
| 199 |
+
raise ValueError(f"`margin` must be between 0.0 and 1.0, got {value}")
|
| 200 |
+
self._margin = value
|
src/custom_models.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import keras
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from custom_layers import L2Normalization, CosineLayer
|
| 4 |
+
|
| 5 |
+
@keras.saving.register_keras_serializable()
|
| 6 |
+
class VerificationModel(tf.keras.Model):
|
| 7 |
+
"""
|
| 8 |
+
Modular Speaker Verification Model.
|
| 9 |
+
|
| 10 |
+
Combines a backbone (feature extractor), an embedding projection, optional L2 normalization,
|
| 11 |
+
and a cosine classification head (CosineLayer).
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
base_model (tf.keras.Model): Backbone model (e.g., ResNet18).
|
| 15 |
+
number_of_classes (int): Number of speaker classes for classification.
|
| 16 |
+
embedding_dim (int, optional): Size of embedding vector. Default: 512.
|
| 17 |
+
return_embedding (bool, optional): If True, returns only embeddings (for verification);
|
| 18 |
+
if False, returns logits for classification. Default: False.
|
| 19 |
+
base_training (bool, optional): If set, overrides 'training' flag for base model (controls BatchNorm, Dropout).
|
| 20 |
+
"""
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
base_model,
|
| 24 |
+
number_of_classes,
|
| 25 |
+
normalization_layer,
|
| 26 |
+
cosine_layer,
|
| 27 |
+
embedding_dim: int = 512,
|
| 28 |
+
return_embedding: bool = False,
|
| 29 |
+
**kwargs
|
| 30 |
+
):
|
| 31 |
+
super().__init__(**kwargs)
|
| 32 |
+
self.base_model = base_model
|
| 33 |
+
self.embedding_dim = embedding_dim
|
| 34 |
+
self.number_of_classes = number_of_classes
|
| 35 |
+
self.return_embedding = return_embedding
|
| 36 |
+
|
| 37 |
+
self.embedding_layer = tf.keras.layers.Dense(
|
| 38 |
+
embedding_dim,
|
| 39 |
+
activation='tanh',
|
| 40 |
+
use_bias=False,
|
| 41 |
+
name='embedding_dense'
|
| 42 |
+
)
|
| 43 |
+
self.bn_neck = tf.keras.layers.BatchNormalization(name="bn_neck")
|
| 44 |
+
self.normalization_layer = normalization_layer
|
| 45 |
+
self.cosine_layer = cosine_layer
|
| 46 |
+
|
| 47 |
+
def call(self, inputs, training=None):
|
| 48 |
+
"""
|
| 49 |
+
Forward pass.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
inputs: Input tensor (e.g., spectrograms).
|
| 53 |
+
training (bool, optional): Training mode (Keras convention).
|
| 54 |
+
Returns:
|
| 55 |
+
Embeddings (if return_embedding=True) or logits for classification.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
x = self.base_model(inputs, training=training)
|
| 59 |
+
x = self.embedding_layer(x)
|
| 60 |
+
x = self.bn_neck(x, training=training)
|
| 61 |
+
x = self.normalization_layer(x)
|
| 62 |
+
if self.return_embedding:
|
| 63 |
+
return x
|
| 64 |
+
return self.cosine_layer(x)
|
| 65 |
+
|
| 66 |
+
def get_config(self):
|
| 67 |
+
base_config = super().get_config()
|
| 68 |
+
return {
|
| 69 |
+
**base_config,
|
| 70 |
+
"base_model": keras.saving.serialize_keras_object(self.base_model),
|
| 71 |
+
"normalization_layer": keras.saving.serialize_keras_object(
|
| 72 |
+
self.normalization_layer
|
| 73 |
+
),
|
| 74 |
+
"cosine_layer": keras.saving.serialize_keras_object(self.cosine_layer),
|
| 75 |
+
"number_of_classes": self.number_of_classes,
|
| 76 |
+
"embedding_dim": self.embedding_dim,
|
| 77 |
+
"return_embedding": self.return_embedding
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
@classmethod
|
| 81 |
+
def from_config(cls, config):
|
| 82 |
+
base_model = keras.saving.deserialize_keras_object(config.pop("base_model"))
|
| 83 |
+
normalization_layer = keras.saving.deserialize_keras_object(config.pop("normalization_layer"))
|
| 84 |
+
cosine_layer = keras.saving.deserialize_keras_object(config.pop("cosine_layer"))
|
| 85 |
+
return cls(base_model=base_model,
|
| 86 |
+
normalization_layer=normalization_layer,
|
| 87 |
+
cosine_layer=cosine_layer,
|
| 88 |
+
**config)
|
src/streamlit_app.py
CHANGED
|
@@ -14,8 +14,6 @@ st.title("Speaker Verification - Demo")
|
|
| 14 |
# ========= Session state =========
|
| 15 |
if "load_model_button" not in st.session_state:
|
| 16 |
st.session_state.load_model_button = False
|
| 17 |
-
# if "verify_speaker_button" not in st.session_state:
|
| 18 |
-
# st.session_state.verify_speaker_button = False
|
| 19 |
if "audio_left" not in st.session_state:
|
| 20 |
st.session_state.audio_left = None
|
| 21 |
if "audio_right" not in st.session_state:
|
|
@@ -60,7 +58,7 @@ def bytes_to_pcm16k_mono(data: bytes, in_format: str | None) -> np.ndarray:
|
|
| 60 |
out, err = ffmpeg.run(stream, capture_stdout=True, capture_stderr=True, input=data)
|
| 61 |
audio = np.frombuffer(out, dtype="<i2").astype(np.float32) / 32768.0
|
| 62 |
if audio.size < WT:
|
| 63 |
-
#
|
| 64 |
audio = np.pad(audio, (int((WT - audio.size) / 2) + 1, int((WT - audio.size) / 2) + 1), mode="constant")
|
| 65 |
return audio
|
| 66 |
|
|
@@ -85,13 +83,13 @@ def load_model_from_hub(repo_id: str, filename: str, revision: str):
|
|
| 85 |
repo_type="model",
|
| 86 |
revision=revision,
|
| 87 |
)
|
| 88 |
-
# Import
|
| 89 |
-
import custom_models, custom_losses
|
| 90 |
model = keras.models.load_model(model_path)
|
| 91 |
if hasattr(model, "return_embedding"):
|
| 92 |
model.return_embedding = True
|
| 93 |
with open(model_path, "rb") as f:
|
| 94 |
-
model_bytes = f.read()
|
| 95 |
return model, model_path, model_bytes
|
| 96 |
|
| 97 |
def handle_record(label: str) -> np.ndarray | None:
|
|
@@ -190,7 +188,7 @@ if st.session_state.load_model_button:
|
|
| 190 |
except Exception as e:
|
| 191 |
st.error(f"Error loading model: {e}")
|
| 192 |
|
| 193 |
-
# ========= Two columns
|
| 194 |
left_column, right_column = st.columns(2)
|
| 195 |
|
| 196 |
with left_column:
|
|
|
|
| 14 |
# ========= Session state =========
|
| 15 |
if "load_model_button" not in st.session_state:
|
| 16 |
st.session_state.load_model_button = False
|
|
|
|
|
|
|
| 17 |
if "audio_left" not in st.session_state:
|
| 18 |
st.session_state.audio_left = None
|
| 19 |
if "audio_right" not in st.session_state:
|
|
|
|
| 58 |
out, err = ffmpeg.run(stream, capture_stdout=True, capture_stderr=True, input=data)
|
| 59 |
audio = np.frombuffer(out, dtype="<i2").astype(np.float32) / 32768.0
|
| 60 |
if audio.size < WT:
|
| 61 |
+
# Padding (centered)
|
| 62 |
audio = np.pad(audio, (int((WT - audio.size) / 2) + 1, int((WT - audio.size) / 2) + 1), mode="constant")
|
| 63 |
return audio
|
| 64 |
|
|
|
|
| 83 |
repo_type="model",
|
| 84 |
revision=revision,
|
| 85 |
)
|
| 86 |
+
# Import custom modules
|
| 87 |
+
import custom_models, custom_losses
|
| 88 |
model = keras.models.load_model(model_path)
|
| 89 |
if hasattr(model, "return_embedding"):
|
| 90 |
model.return_embedding = True
|
| 91 |
with open(model_path, "rb") as f:
|
| 92 |
+
model_bytes = f.read()
|
| 93 |
return model, model_path, model_bytes
|
| 94 |
|
| 95 |
def handle_record(label: str) -> np.ndarray | None:
|
|
|
|
| 188 |
except Exception as e:
|
| 189 |
st.error(f"Error loading model: {e}")
|
| 190 |
|
| 191 |
+
# ========= Two columns =========
|
| 192 |
left_column, right_column = st.columns(2)
|
| 193 |
|
| 194 |
with left_column:
|