Spaces:
Running
on
Zero
Running
on
Zero
| # Imports | |
| import pdb | |
| import time | |
| import torch | |
| import tqlt.utils as tu | |
| from models.birefnet import BiRefNet | |
| from PIL import Image | |
| from torchvision import transforms | |
| # # Option 1: loading BiRefNet with weights: | |
| from transformers import AutoModelForImageSegmentation | |
| # # Option-3: Loading model and weights from local disk: | |
| from utils import check_state_dict | |
| # birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| # "zhengpeng7/BiRefNet", trust_remote_code=True, local | |
| # ) | |
| # # Option-2: loading weights with BiReNet codes: | |
| # birefnet = BiRefNet.from_pretrained('zhengpeng7/BiRefNet') | |
| imgs = tu.next_files("./in_the_wild", ".png") | |
| birefnet = BiRefNet(bb_pretrained=False) | |
| state_dict = torch.load("./BiRefNet-general-epoch_244.pth", map_location="cpu") | |
| state_dict = check_state_dict(state_dict) | |
| birefnet.load_state_dict(state_dict) | |
| # Load Model | |
| device = "cuda" | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| birefnet.to(device) | |
| birefnet.eval() | |
| print("BiRefNet is ready to use.") | |
| # Input Data | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| import os | |
| from glob import glob | |
| from image_proc import refine_foreground | |
| src_dir = "./images_todo" | |
| image_paths = glob(os.path.join(src_dir, "*")) | |
| dst_dir = "./predictions" | |
| os.makedirs(dst_dir, exist_ok=True) | |
| for image_path in imgs: | |
| print("Processing {} ...".format(image_path)) | |
| image = Image.open(image_path) | |
| input_images = transform_image(image).unsqueeze(0).to("cuda") | |
| # Prediction | |
| start = time.time() | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| print(time.time() - start) | |
| pred = preds[0].squeeze() | |
| # Save Results | |
| file_ext = os.path.splitext(image_path)[-1] | |
| pred_pil = transforms.ToPILImage()(pred) | |
| pred_pil = pred_pil.resize(image.size) | |
| pred_pil.save(image_path.replace(src_dir, dst_dir).replace(file_ext, "-mask.png")) | |
| image_masked = refine_foreground(image, pred_pil) | |
| image_masked.putalpha(pred_pil) | |
| image_masked.save( | |
| image_path.replace(src_dir, dst_dir).replace(file_ext, "-subject.png") | |
| ) | |
| # Save Results | |
| file_ext = os.path.splitext(image_path)[-1] | |
| pred_pil = transforms.ToPILImage()(pred) | |
| pred_pil = pred_pil.resize(image.size) | |
| pred_pil.save(image_path.replace(src_dir, dst_dir).replace(file_ext, "-mask.png")) | |