Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
import gradio
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from IPython.display import display, HTML
|
| 5 |
+
import base64
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
from sentence_transformers import SentenceTransformer, util
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
backgroundPipe = pipeline("image-segmentation", model="facebook/maskformer-swin-large-coco")
|
| 12 |
+
PersonPipe = pipeline("image-segmentation", model="mattmdjaga/segformer_b2_clothes")
|
| 13 |
+
sentenceModal = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 14 |
+
|
| 15 |
+
def getImageDetails(image) -> dict:
|
| 16 |
+
person = PersonPipe(image)
|
| 17 |
+
bg = backgroundPipe(image)
|
| 18 |
+
ret = {}
|
| 19 |
+
labs = []
|
| 20 |
+
for imask in bg:
|
| 21 |
+
ret[imask["label"]] = imask["mask"] # Apply base64 image converter here if needed
|
| 22 |
+
labs.append(imask["label"])
|
| 23 |
+
for mask in person:
|
| 24 |
+
ret[mask["label"]] = mask["mask"] # Apply base64 image converter here if needed
|
| 25 |
+
labs.append(mask["label"])
|
| 26 |
+
return ret, labs
|
| 27 |
+
|
| 28 |
+
def processSentence(sentence: str, semilist: list):
|
| 29 |
+
query_embedding = sentenceModal.encode(sentence)
|
| 30 |
+
passage_embedding = sentenceModal.encode(semilist)
|
| 31 |
+
listv = util.dot_score(query_embedding, passage_embedding)[0]
|
| 32 |
+
float_list = []
|
| 33 |
+
for i in listv:
|
| 34 |
+
float_list.append(i)
|
| 35 |
+
max_value = max(float_list)
|
| 36 |
+
max_index = float_list.index(max_value)
|
| 37 |
+
return semilist[max_index]
|
| 38 |
+
|
| 39 |
+
def process_image(image):
|
| 40 |
+
rgba_image = image.convert("RGBA")
|
| 41 |
+
switched_data = [
|
| 42 |
+
(255, 255, 255, pixel[3]) if pixel[:3] == (0, 0, 0) else (0, 0, 0, pixel[3]) if pixel[:3] == (255, 255, 255) else pixel
|
| 43 |
+
for pixel in rgba_image.getdata()
|
| 44 |
+
]
|
| 45 |
+
switched_image = Image.new("RGBA", rgba_image.size)
|
| 46 |
+
switched_image.putdata(switched_data)
|
| 47 |
+
final_data = [
|
| 48 |
+
(0, 0, 0, 0) if pixel[:3] == (255, 255, 255) else pixel
|
| 49 |
+
for pixel in switched_image.getdata()
|
| 50 |
+
]
|
| 51 |
+
processed_image = Image.new("RGBA", rgba_image.size)
|
| 52 |
+
processed_image.putdata(final_data)
|
| 53 |
+
return processed_image
|
| 54 |
+
|
| 55 |
+
def processAndGetMask(image: str, text: str):
|
| 56 |
+
datas, labs = getImageDetails(image)
|
| 57 |
+
selector = processSentence(text, labs)
|
| 58 |
+
imageout = datas[selector]
|
| 59 |
+
return process_image(imageout)
|
| 60 |
+
|
| 61 |
+
gr = gradio.Interface(
|
| 62 |
+
processAndGetMask,
|
| 63 |
+
[gradio.Image(type="pil"), gradio.Text()],
|
| 64 |
+
gradio.Image(type="pil")
|
| 65 |
+
)
|
| 66 |
+
gr.launch()
|