File size: 24,711 Bytes
7dfe46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from pathlib import Path
import tempfile
import time
import json
import logging
import os
import sys
from typing import Dict, Any, Tuple, List
from datetime import datetime
from dotenv import load_dotenv
load_dotenv()

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

try:
    from src.config import Config
    from src.ingestion_pipeline import DocumentIngestionPipeline, IngestionResult
    from src.rag_engine import RAGEngine, RAGResponse
    from src.metadata_manager import MetadataManager
    from src.document_processor import ProcessingStatus, DocumentProcessorFactory, DocumentType
    from src.pdf_processor import PDFProcessor
    from src.excel_processor import ExcelProcessor
    from src.image_processor import ImageProcessor
    
except ImportError as e:
    logger.error(f"Failed to import RAG components: {e}")
    print(f"❌ Import Error: {e}")
    print("Please ensure all src/ modules are properly structured and dependencies are installed")
    sys.exit(1)




class RAGGradioDemo:
    """Fixed Gradio demo application for the Manufacturing RAG Agent."""
    
    def __init__(self):
        """Initialize the RAG demo application."""
        self.config = None
        self.ingestion_pipeline = None
        self.rag_engine = None
        self.metadata_manager = None
        
        # Initialize session state tracking
        self.system_initialized = False
        self.documents = []
        self.chat_history = []
    
    def initialize_system(self) -> Tuple[bool, str]:
        """Initialize the RAG system components with better error handling."""
        try:
            # Find config file
            config_paths = [
                "src/config.yaml",
                "config.yaml", 
                os.path.join(os.path.dirname(__file__), "config.yaml"),
                os.path.join(os.path.dirname(os.path.dirname(__file__)), "src", "config.yaml")
            ]
            
            config_path = None
            for path in config_paths:
                if os.path.exists(path):
                    config_path = path
                    break
            
            if not config_path:
                return False, f"Configuration file not found. Searched: {config_paths}"
            
            logger.info(f"Using config file: {config_path}")
            
            # Load configuration
            self.config = Config(config_path)
            
            # Validate API keys
            required_keys = {
                'GROQ_API_KEY': self.config.groq_api_key,
                'SILICONFLOW_API_KEY': self.config.siliconflow_api_key,
                'QDRANT_URL': self.config.qdrant_url
            }
            
            missing_keys = [k for k, v in required_keys.items() if not v]
            if missing_keys:
                return False, f"Missing required environment variables: {', '.join(missing_keys)}"
            
            # Create config dictionary using your config structure
            rag_config = self.config.rag_config
            
            config_dict = {
                # API keys
                'siliconflow_api_key': self.config.siliconflow_api_key,
                'groq_api_key': self.config.groq_api_key,
                
                # Qdrant configuration
                'qdrant_url': self.config.qdrant_url,
                'qdrant_api_key': self.config.qdrant_api_key,
                'qdrant_collection': 'manufacturing_docs',
                
                # Model configuration from your config.yaml
                'embedding_model': rag_config.get('embedding_model', 'Qwen/Qwen3-Embedding-8B'),
                'reranker_model': rag_config.get('reranker_model', 'Qwen/Qwen3-Reranker-8B'),
                'llm_model': rag_config.get('llm_model', 'openai/gpt-oss-120b'),
                
                # Vector configuration
                'vector_size': 1024,  # Adjust based on your embedding model
                
                # RAG parameters from your config
                'max_context_chunks': rag_config.get('max_context_chunks', 5),
                'similarity_threshold': rag_config.get('similarity_threshold', 0.7),
                'rerank_top_k': rag_config.get('rerank_top_k', 20),
                'final_top_k': rag_config.get('final_top_k', 5),
                
                # Text processing
                'chunk_size': rag_config.get('chunk_size', 512),
                'chunk_overlap': rag_config.get('chunk_overlap', 50),
                'max_context_length': 4000,
                
                # Document processing
                'image_processing': True,
                'table_extraction': True,
                'max_file_size_mb': 100,
                
                # Storage
                'metadata_db_path': './data/metadata.db',
                
                # Performance
                'max_retries': 3,
                'batch_size': 32,
                'enable_caching': True,
                'temperature': 0.1,
                'max_tokens': 1024
            }
            
            # Register document processors
            DocumentProcessorFactory.register_processor(DocumentType.PDF, PDFProcessor)
            DocumentProcessorFactory.register_processor(DocumentType.EXCEL, ExcelProcessor)
            DocumentProcessorFactory.register_processor(DocumentType.IMAGE, ImageProcessor)
            
            # Initialize components with error handling
            try:
                self.metadata_manager = MetadataManager(config_dict)
                logger.info("βœ… Metadata manager initialized")
                
                self.ingestion_pipeline = DocumentIngestionPipeline(config_dict)
                logger.info("βœ… Ingestion pipeline initialized")
                
                self.rag_engine = RAGEngine(config_dict)
                logger.info("βœ… RAG engine initialized")
                
            except Exception as e:
                return False, f"Failed to initialize components: {str(e)}"
            
            self.system_initialized = True
            return True, "RAG system initialized successfully!"
            
        except Exception as e:
            error_msg = f"Failed to initialize RAG system: {str(e)}"
            logger.error(error_msg)
            return False, error_msg
    
    def process_uploaded_files(self, files) -> Tuple[str, pd.DataFrame]:
        """Process uploaded files with improved error handling."""
        if not self.system_initialized:
            return "❌ System not initialized. Please initialize first.", pd.DataFrame()
        
        if not files:
            return "No files uploaded.", pd.DataFrame()
        
        results = []
        total_files = len(files)
        
        try:
            for i, file in enumerate(files):
                logger.info(f"Processing file {i+1}/{total_files}: {file.name}")
                
                # Save uploaded file temporarily
                temp_path = None
                try:
                    # Create temporary file with proper extension
                    suffix = Path(file.name).suffix
                    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
                        # Read file content
                        file_content = file.read()
                        tmp_file.write(file_content)
                        temp_path = tmp_file.name
                    
                    logger.info(f"Saved temp file: {temp_path}")
                    
                    # Process document
                    result = self.ingestion_pipeline.ingest_document(temp_path)
                    
                    # Add result info
                    results.append({
                        'Filename': file.name,
                        'Status': 'βœ… Success' if result.success else '❌ Failed',
                        'Chunks Created': result.chunks_created,
                        'Chunks Indexed': result.chunks_indexed,
                        'Processing Time (s)': f"{result.processing_time:.2f}",
                        'Error Message': result.error_message or 'None'
                    })
                    
                    logger.info(f"Processing result: {'Success' if result.success else 'Failed'}")
                    
                except Exception as e:
                    logger.error(f"Error processing {file.name}: {e}")
                    results.append({
                        'Filename': file.name,
                        'Status': '❌ Failed',
                        'Chunks Created': 0,
                        'Chunks Indexed': 0,
                        'Processing Time (s)': '0.00',
                        'Error Message': str(e)
                    })
                
                finally:
                    # Clean up temporary file
                    if temp_path and os.path.exists(temp_path):
                        try:
                            os.unlink(temp_path)
                            logger.info(f"Cleaned up temp file: {temp_path}")
                        except Exception as e:
                            logger.warning(f"Failed to clean up temp file: {e}")
            
            # Create results summary
            successful = sum(1 for r in results if 'Success' in r['Status'])
            total_chunks = sum(r['Chunks Indexed'] for r in results if isinstance(r['Chunks Indexed'], int))
            
            status_msg = f"βœ… Processing Complete: {successful}/{total_files} files processed successfully. Total chunks indexed: {total_chunks}"
            
            return status_msg, pd.DataFrame(results)
            
        except Exception as e:
            error_msg = f"❌ Batch processing failed: {str(e)}"
            logger.error(error_msg)
            return error_msg, pd.DataFrame(results) if results else pd.DataFrame()
    
    def ask_question(self, question: str, max_results: int = 5, 
                    similarity_threshold: float = 0.7) -> Tuple[str, str, pd.DataFrame]:
        """Process a question through the RAG engine with better error handling."""
        if not self.system_initialized:
            return "❌ System not initialized. Please initialize first.", "", pd.DataFrame()
        
        if not question.strip():
            return "Please enter a question.", "", pd.DataFrame()
        
        try:
            try:
                documents = self.metadata_manager.list_documents(
                    status=ProcessingStatus.COMPLETED, 
                    limit=1
                )
                if not documents:
                    return "⚠️ No processed documents available. Please upload and process documents first.", "", pd.DataFrame()
            except Exception as e:
                logger.error(f"Failed to check documents: {e}")
                return "❌ Error checking document availability.", "", pd.DataFrame()
            
            # Update RAG engine config temporarily for this query
            original_final_top_k = self.rag_engine.final_top_k
            original_similarity_threshold = self.rag_engine.similarity_threshold
            
            self.rag_engine.final_top_k = max_results
            self.rag_engine.similarity_threshold = similarity_threshold
            
            # Get response
            logger.info(f"Asking question: {question[:50]}...")
            response = self.rag_engine.answer_question(question)
            
            # Restore original config
            self.rag_engine.final_top_k = original_final_top_k
            self.rag_engine.similarity_threshold = original_similarity_threshold
            
            # Add to chat history
            self.chat_history.append((question, response))
            
            # Format answer
            if not response.success:
                return f"❌ Failed to generate answer: {response.error_message}", "", pd.DataFrame()
            
            # Create citations info
            citations_info = self._format_citations(response.citations)
            
            # Create performance dataframe
            performance_data = {
                'Metric': ['Confidence Score', 'Processing Time (s)', 'Retrieval Time (s)', 
                          'Generation Time (s)', 'Rerank Time (s)', 'Sources Used', 'Chunks Retrieved'],
                'Value': [
                    f"{response.confidence_score:.3f}",
                    f"{response.processing_time:.3f}",
                    f"{response.retrieval_time:.3f}",
                    f"{response.generation_time:.3f}",
                    f"{response.rerank_time:.3f}",
                    len(response.citations),
                    response.total_chunks_retrieved
                ]
            }
            
            performance_df = pd.DataFrame(performance_data)
            
            return response.answer, citations_info, performance_df
            
        except Exception as e:
            error_msg = f"❌ Question processing failed: {str(e)}"
            logger.error(error_msg)
            return error_msg, "", pd.DataFrame()
    
    def _format_citations(self, citations) -> str:
        """Format citations for display."""
        if not citations:
            return "No citations available."
        
        citation_text = "## πŸ“š Sources & Citations\n\n"
        
        for i, citation in enumerate(citations):
            citation_text += f"**Source {i+1}:** {citation.source_file} (Confidence: {citation.confidence:.3f})\n"
            
            # Add specific location info
            location_parts = []
            if citation.page_number:
                location_parts.append(f"πŸ“„ Page: {citation.page_number}")
            if citation.worksheet_name:
                location_parts.append(f"πŸ“Š Sheet: {citation.worksheet_name}")
            if citation.cell_range:
                location_parts.append(f"πŸ”’ Range: {citation.cell_range}")
            if citation.section_title:
                location_parts.append(f"πŸ“‘ Section: {citation.section_title}")
            
            if location_parts:
                citation_text += f"*Location:* {' | '.join(location_parts)}\n"
            
            citation_text += f"*Excerpt:* \"{citation.text_snippet}\"\n\n"
        
        return citation_text
    
    
    
    def get_document_library(self):
        if not self.system_initialized:
            return pd.DataFrame({'Message': ['System not initialized']})
        try:
            documents = self.metadata_manager.list_documents(limit=50)
            if not documents:
                return pd.DataFrame({'Message': ['No documents processed yet']})
            doc_data = []
            for doc in documents:
                doc_data.append({
                    'Filename': doc.filename,
                    'Type': doc.file_type.upper(),
                    'Status': doc.processing_status.value.title(),
                    'Chunks': doc.total_chunks,
                    'Size': self._format_size(doc.file_size),
                    'Uploaded': doc.upload_timestamp.strftime('%Y-%m-%d %H:%M')
                })
            return pd.DataFrame(doc_data)
        except Exception as e:
            logger.error(f"Failed to get document library: {e}")
            return pd.DataFrame({'Error': [str(e)]})
    
    
    def get_system_status(self) -> Tuple[str, pd.DataFrame]:
        """Get system status and health information."""
        if not self.system_initialized:
            return "❌ System not initialized", pd.DataFrame()
        try:
            # Health checks
            rag_health = self.rag_engine.health_check()
            pipeline_health = self.ingestion_pipeline.health_check()
            # Create status message
            status_parts = []
            all_health = {**rag_health, **pipeline_health}
            for component, healthy in all_health.items():
                status = "βœ… Healthy" if healthy else "❌ Unhealthy"
                status_parts.append(f"**{component.replace('_', ' ').title()}:** {status}")
            
            status_message = "## πŸ₯ System Health\n" + "\n".join(status_parts)
            
            # Create detailed status table
            health_data = []
            for component, healthy in all_health.items():
                health_data.append({
                    'Component': component.replace('_', ' ').title(),
                    'Status': 'βœ… Healthy' if healthy else '❌ Unhealthy',
                    'Last Checked': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
                })
            
            return status_message, pd.DataFrame(health_data)
            
        except Exception as e:
            error_msg = f"❌ Failed to check system status: {str(e)}"
            logger.error(error_msg)
            return error_msg, pd.DataFrame()
    
    def _format_file_size(self, size_bytes: int) -> str:
        """Format file size in human readable format."""
        if size_bytes == 0:
            return "0B"
        
        size_names = ["B", "KB", "MB", "GB", "TB"]
        i = 0
        while size_bytes >= 1024 and i < len(size_names) - 1:
            size_bytes /= 1024.0
            i += 1
        
        return f"{size_bytes:.1f}{size_names[i]}"


def create_gradio_interface():
    """Create the main Gradio interface with proper error handling."""
    
    # Initialize demo instance
    demo_instance = RAGGradioDemo()
    
    # Define the interface
    with gr.Blocks(title="Manufacturing RAG Agent", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🏭 Manufacturing RAG Agent
        *Intelligent document analysis for manufacturing data*
        
        This system allows you to upload manufacturing documents (PDF, Excel, Images) and ask questions about their content using SiliconFlow embeddings and Groq LLM.
        """)
        
        # System initialization status
        with gr.Row():
            system_status = gr.Markdown("**System Status:** Not initialized")
            init_btn = gr.Button("πŸš€ Initialize System", variant="primary")
        
        # Main functionality tabs
        with gr.Tabs():
            # Document Upload Tab
            with gr.TabItem("πŸ“„ Document Upload"):
                gr.Markdown("### Upload and Process Documents")
                
                with gr.Row():
                    with gr.Column():
                        file_upload = gr.File(
                            file_count="multiple",
                            file_types=[".pdf", ".xlsx", ".xls", ".xlsm", ".png", ".jpg", ".jpeg"],
                            label="Choose files to upload (PDF, Excel, Images)"
                        )
                        upload_btn = gr.Button("πŸ”„ Process Documents", variant="primary")
                        upload_status = gr.Textbox(
                            label="Processing Status",
                            interactive=False,
                            lines=3
                        )
                
                # Results display
                upload_results = gr.Dataframe(
                    label="Processing Results",
                    interactive=False
                )
                
                # Document Library
                gr.Markdown("### πŸ“š Document Library")
                refresh_docs_btn = gr.Button("πŸ”„ Refresh Library")
                doc_library = gr.Dataframe(
                    label="Uploaded Documents",
                    interactive=False
                )
            
            # Question Answering Tab
            with gr.TabItem("❓ Ask Questions"):
                gr.Markdown("### Ask Questions About Your Documents")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        question_input = gr.Textbox(
                            label="Your Question",
                            placeholder="e.g., What is the production yield mentioned in the documents?",
                            lines=2
                        )
                        ask_btn = gr.Button("πŸ” Ask Question", variant="primary")
                    
                    with gr.Column(scale=1):
                        gr.Markdown("#### Settings")
                        max_results = gr.Slider(
                            minimum=1, maximum=10, value=5, step=1,
                            label="Max Context Chunks"
                        )
                        similarity_threshold = gr.Slider(
                            minimum=0.0, maximum=1.0, value=0.7, step=0.1,
                            label="Similarity Threshold"
                        )
                
                # Answer display
                answer_output = gr.Markdown(label="Answer")
                citations_output = gr.Markdown(label="Citations")
                
                # Performance metrics
                performance_metrics = gr.Dataframe(
                    label="Performance Metrics",
                    interactive=False
                )
            
            # System Status Tab
            with gr.TabItem("βš™οΈ System Status"):
                gr.Markdown("### System Health & Information")
                
                check_health_btn = gr.Button("πŸ” Check System Health")
                health_status = gr.Markdown("Click 'Check System Health' to view status...")
                health_details = gr.Dataframe(
                    label="Component Health Details",
                    interactive=False
                )
        
        # Event handlers
        def initialize_system():
            """Initialize the system and return status."""
            success, message = demo_instance.initialize_system()
            if success:
                return f"**System Status:** <span style='color: green'>βœ… {message}</span>"
            else:
                return f"**System Status:** <span style='color: red'>❌ {message}</span>"
        
        def process_files(files):
            """Process uploaded files."""
            if not files:
                return "No files selected", pd.DataFrame()
            return demo_instance.process_uploaded_files(files)
        
        def ask_question(question, max_results, similarity_threshold):
            """Ask a question."""
            if not question.strip():
                return "Please enter a question", "", pd.DataFrame()
            return demo_instance.ask_question(question, max_results, similarity_threshold)
        
        def refresh_library():
            """Refresh document library."""
            return demo_instance.get_document_library()
        
        def check_health():
            """Check system health."""
            return demo_instance.get_system_status()
        
        # Connect events
        init_btn.click(
            initialize_system,
            outputs=[system_status]
        )
        
        upload_btn.click(
            process_files,
            inputs=[file_upload],
            outputs=[upload_status, upload_results]
        )
        
        ask_btn.click(
            ask_question,
            inputs=[question_input, max_results, similarity_threshold],
            outputs=[answer_output, citations_output, performance_metrics]
        )
        
        refresh_docs_btn.click(
            refresh_library,
            outputs=[doc_library]
        )
        
        check_health_btn.click(
            check_health,
            outputs=[health_status, health_details]
        )
        
        # Auto-refresh library after upload
        upload_btn.click(
            refresh_library,
            outputs=[doc_library]
        )
    
    return demo


def main():
    """Main function to launch the Gradio demo."""
    try:
        # Create directories
        os.makedirs("data", exist_ok=True)
        os.makedirs("logs", exist_ok=True)
        
        # Create and launch the interface
        demo = create_gradio_interface()
        
        # Launch with configuration
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            debug=True,
            show_error=True
        )
        
    except Exception as e:
        print(f"❌ Failed to launch Gradio demo: {e}")
        print("Please check your configuration and dependencies.")


if __name__ == "__main__":
    main()