File size: 52,223 Bytes
2959ef9 cea056c 2959ef9 d916930 2959ef9 d916930 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c a519263 cea056c 2959ef9 a519263 2959ef9 cea056c 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d 2959ef9 6fa314d cea056c 6fa314d 2959ef9 cea056c 2959ef9 cea056c 2959ef9 cea056c 2959ef9 a519263 2959ef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 |
import io
import os
import requests
import sys
# import tempfile
# import time
from typing import List, Dict, Tuple, Any, Optional
import uuid
# Add project root to Python path
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from PIL import Image
from FlagEmbedding import BGEM3FlagModel
import gradio as gr
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
import qdrant_client
from qdrant_client.http.models import Modifier, Distance, SparseVectorParams, VectorParams, SparseIndexParams
import torch
from transformers import EfficientNetModel, AutoImageProcessor
from pymongo import MongoClient
from config import (
QDRANT_COLLECTION_NAME_SPCHIEUSANG,
QDRANT_COLLECTION_NAME_SPCHUYENDUNG,
QDRANT_COLLECTION_NAME_SPPHICHNUOC,
QDRANT_COLLECTION_NAME_SPTHIETBIDIEN,
QDRANT_COLLECTION_NAME_SPNHATHONGMINH,
QDRANT_COLLECTION_NAME_GPNHATHONGMINH,
QDRANT_COLLECTION_NAME_GPHOCDUONG,
QDRANT_COLLECTION_NAME_GPNGUNGHIEP,
QDRANT_COLLECTION_NAME_GPCANHQUAN,
QDRANT_COLLECTION_NAME_GPNLMT,
QDRANT_COLLECTION_NAME_GPNNCNC,
QDRANT_COLLECTION_NAME_GPDUONGPHO,
QDRANT_COLLECTION_NAME_GPVPCS,
QDRANT_COLLECTION_NAME_GPNMCN,
QDRANT_COLLECTION_NAME_GPNOXH,
IMAGE_EMBEDDING_SIZE,
TEXT_EMBEDDING_SIZE,
IMAGE_EMBEDDING_MODEL,
TEXT_EMBEDDING_MODEL,
MONGODB_URI,
QDRANT_HOST,
QDRANT_API_KEY,
MONGODB_DATABASE
)
from data_helper import *
# from src.utils.helper import client
client = qdrant_client.QdrantClient(
url=QDRANT_HOST,
api_key=QDRANT_API_KEY,
timeout=300.0
)
"""=================SETTINGS========================"""
device = torch.device(
"cuda" if torch.cuda.is_available() else
"mps" if torch.mps.is_available() else
"cpu"
)
product_vectors_config = {
"product": qdrant_client.http.models.VectorParams(
size=TEXT_EMBEDDING_SIZE,
distance=Distance.COSINE
),
"image": qdrant_client.http.models.VectorParams(
size=IMAGE_EMBEDDING_SIZE,
distance=Distance.COSINE
),
"product_bgem3_dense": qdrant_client.http.models.VectorParams(
size=1024,
distance=Distance.COSINE,
)
}
sparse_vectors_config={
"product_bgem3_sparse": SparseVectorParams(
index=SparseIndexParams(on_disk=False),
modifier = Modifier.IDF
)
}
product_collections = [
QDRANT_COLLECTION_NAME_SPCHIEUSANG,
QDRANT_COLLECTION_NAME_SPCHUYENDUNG,
QDRANT_COLLECTION_NAME_SPPHICHNUOC,
QDRANT_COLLECTION_NAME_SPTHIETBIDIEN,
QDRANT_COLLECTION_NAME_SPNHATHONGMINH
]
product_types = [
"chieu_sang",
"chuyen_dung",
"phich_nuoc",
"thiet_bi_dien",
"nha_thong_minh"
]
# MongoDB collections mapping for products
mongodb_product_collections = {
"chieu_sang": "sp_chieu_sang",
"chuyen_dung": "sp_chuyen_dung",
"phich_nuoc": "sp_phich_nuoc",
"thiet_bi_dien": "sp_thiet_bi_dien",
"nha_thong_minh": "sp_nha_thong_minh"
}
solution_collections = [
QDRANT_COLLECTION_NAME_GPCANHQUAN,
QDRANT_COLLECTION_NAME_GPDUONGPHO,
QDRANT_COLLECTION_NAME_GPHOCDUONG,
QDRANT_COLLECTION_NAME_GPNHATHONGMINH,
QDRANT_COLLECTION_NAME_GPNGUNGHIEP,
QDRANT_COLLECTION_NAME_GPNLMT,
QDRANT_COLLECTION_NAME_GPNNCNC,
QDRANT_COLLECTION_NAME_GPVPCS,
QDRANT_COLLECTION_NAME_GPNMCN,
QDRANT_COLLECTION_NAME_GPNOXH
]
solution_types = [
"canh_quan",
"duong_pho",
"hoc_duong",
"nha_thong_minh",
"ngu_nghiep",
"nlmt",
"nong_nghiep_cnc",
"van_phong_cong_so",
"nha_may_cong_nghiep",
"nha_o_xa_hoi"
]
# MongoDB collections mapping for solutions
mongodb_solution_collections = {
"canh_quan": "gp_canh_quan",
"duong_pho": "gp_duong_pho",
"hoc_duong": "gp_hoc_duong",
"nha_thong_minh": "gp_nha_thong_minh",
"ngu_nghiep": "gp_ngu_nghiep",
"nlmt": "gp_he_thong_dien_nlmt",
"nong_nghiep_cnc": "gp_nong_nghiep_cnc",
"van_phong_cong_so": "gp_van_phong_cong_so",
"nha_may_cong_nghiep": "gp_nha_may_cong_nghiep",
"nha_o_xa_hoi": "gp_nha_o_xa_hoi"
}
"""=================MONGODB CONNECTION========================"""
class MongoDBConnection:
def __init__(self, connection_string: str = None, db_name: str = MONGODB_DATABASE):
"""
Initialize MongoDB connection
Args:
connection_string: MongoDB Atlas connection string
db_name: Database name
"""
self.connection_string = MONGODB_URI if connection_string is None else connection_string
self.db_name = db_name
self.client = None
self.db = None
def connect(self):
"""Establish connection to MongoDB"""
try:
self.client = MongoClient(self.connection_string)
self.db = self.client[self.db_name]
# Test connection
self.client.admin.command('ping')
print(f"✅ Connected to MongoDB: {self.db_name}")
return True
except Exception as e:
print(f"❌ Failed to connect to MongoDB: {e}")
return False
def get_collection_data(self, collection_name: str) -> List[Dict]:
"""
Retrieve all documents from a collection
Args:
collection_name: Name of the MongoDB collection
Returns:
List of documents
"""
try:
collection = self.db[collection_name]
data = list(collection.find({}))
# Convert ObjectId to string
for item in data:
if '_id' in item:
item['_id'] = str(item['_id'])
print(f"✅ Retrieved {len(data)} documents from {collection_name}")
return data
except Exception as e:
print(f"❌ Error retrieving data from {collection_name}: {e}")
return []
def close(self):
"""Close MongoDB connection"""
if self.client:
self.client.close()
print("✅ MongoDB connection closed")
"""=================CLASS EMBEDDING========================"""
class DataEmbedding:
def __init__(self):
pass
def embed_text_batch(self, contents: List[str], batch_size: int = 32, hybrid_mode: bool = False) -> List[Optional[torch.Tensor]]:
"""Create text embeddings using HuggingFaceEmbeddings (768 dimensions), and optionally BGEM3 (1024 dimensions) in batches."""
normal_embeddings, bgem3_dense_embeddings, bgem3_sparse_embeddings = [], [], []
# Filter out empty contents and keep track of original indices
valid_contents = []
valid_indices = []
for i, content in enumerate(contents):
if content:
valid_contents.append(content)
valid_indices.append(i)
if not valid_contents:
return [None] * len(contents)
try:
text_embedding_model = HuggingFaceEmbeddings(
model_name=TEXT_EMBEDDING_MODEL,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': True}
)
if hybrid_mode:
hybrid_embedding_model = BGEM3FlagModel(
"BAAI/bge-m3",
use_fp16=True,
devices=str(device)
)
for i in range(0, len(valid_contents), batch_size):
batch_contents = valid_contents[i:i+batch_size]
bgem3_dense_embeddings_list, bgem3_sparse_embeddings_list = [], []
if hybrid_mode:
bgem3_embeddings = hybrid_embedding_model.encode(
sentences=batch_contents,
return_dense=True,
return_sparse=True
)
bgem3_dense_embeddings_list = bgem3_embeddings['dense_vecs']
bgem3_sparse_embeddings_list = bgem3_embeddings['lexical_weights']
bgem3_dense_embeddings.extend([
torch.tensor(emb, dtype=torch.float32)
for emb in bgem3_dense_embeddings_list
])
bgem3_sparse_embeddings.extend(bgem3_sparse_embeddings_list)
normal_embeddings_list = text_embedding_model.embed_documents(batch_contents)
normal_embeddings.extend([torch.tensor(emb, dtype=torch.float32) for emb in normal_embeddings_list])
# Map back to original order
result = [None] * len(contents)
for i, valid_idx in enumerate(valid_indices):
if hybrid_mode:
result[valid_idx] = (normal_embeddings[i], bgem3_dense_embeddings[i], bgem3_sparse_embeddings[i])
else:
result[valid_idx] = (normal_embeddings[i], [], [])
return result
except Exception as e:
print(f"❌ Error in batch text embedding: {str(e)[:100]}...")
return []
def embed_images_batch(self, image_urls: List[str], batch_size: int = 32) -> List[Optional[torch.Tensor]]:
"""Create image embeddings in batches."""
all_embeddings: List[Optional[torch.Tensor]] = [None] * len(image_urls)
# Create a list of images and their original indices that need processing
images_to_process: List[Tuple[Any, int]] = []
for i, url in enumerate(image_urls):
if url:
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content)).convert('RGB')
images_to_process.append((image, i))
except requests.exceptions.RequestException as e:
print(f"❌ HTTP error for url {url}: {e}")
pass
except Exception as e:
print(f"❌ Error loading image {url}: {e}")
pass
if not images_to_process:
return all_embeddings
image_processor = AutoImageProcessor.from_pretrained(IMAGE_EMBEDDING_MODEL)
image_embedding_model = EfficientNetModel.from_pretrained(IMAGE_EMBEDDING_MODEL).to(device)
# Process images in batches
for i in range(0, len(images_to_process), batch_size):
batch_data = images_to_process[i:i+batch_size]
batch_images = [d[0] for d in batch_data]
batch_indices = [d[1] for d in batch_data]
try:
inputs = image_processor(images=batch_images, return_tensors="pt").to(device)
with torch.no_grad():
outputs = image_embedding_model(**inputs)
embeddings = outputs.pooler_output.squeeze()
normalized_embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
for j, embedding in enumerate(normalized_embeddings):
original_index = batch_indices[j]
all_embeddings[original_index] = embedding.squeeze()
except Exception as e:
print(f"❌ Error embedding image batch: {e}")
pass
return all_embeddings
class ProductEmbedding(DataEmbedding):
def run_embedding(self, product_type: str, mongodb_conn: MongoDBConnection,
batch_size: int = 32, hybrid_mode: bool = False):
"""
Generate embeddings for a specific product type from MongoDB
Args:
product_type: Type of product
mongodb_conn: MongoDB connection object
batch_size: Batch size for processing
hybrid_mode: Whether to use hybrid text embedding (BGEM3)
"""
embeddings = []
processed_docs = self.prepare_docs(
product_type=product_type,
mongodb_conn=mongodb_conn
)
# Batch text embedding for speed
text_contents = [doc.page_content for doc in processed_docs]
text_embeddings = self.embed_text_batch(text_contents, batch_size, hybrid_mode)
# Batch image embedding
image_urls = [doc.metadata.get("image_url") for doc in processed_docs]
image_embeddings = self.embed_images_batch(image_urls)
# Create embeddings with optimized structure creation
for i, doc in enumerate(processed_docs):
if i < len(text_embeddings) and text_embeddings[i] is not None:
normal_text_embedding, bgem3_dense_text_embedding, bgem3_sparse_text_embedding = text_embeddings[i]
else:
normal_text_embedding, bgem3_dense_text_embedding, bgem3_sparse_text_embedding = None, None, None
image_embedding = image_embeddings[i] if i < len(image_embeddings) else None
# Create vectors dict - ensure proper format
vectors = {
"product": normal_text_embedding.tolist() if normal_text_embedding is not None else [0.0] * TEXT_EMBEDDING_SIZE,
"product_bgem3_dense": bgem3_dense_text_embedding.tolist() if bgem3_dense_text_embedding is not None else [0.0] * 1024,
"image": image_embedding.tolist() if image_embedding is not None else [0.0] * IMAGE_EMBEDDING_SIZE
}
if bgem3_sparse_text_embedding is not None and bgem3_sparse_text_embedding:
sparse_vectors = {
"product_bgem3_sparse": {
"indices": list(bgem3_sparse_text_embedding.keys()),
"values": [float(v) for v in bgem3_sparse_text_embedding.values()]
}
}
else:
sparse_vectors = {"product_sparse": {"indices": [], "values": []}}
# Create payload with optimized metadata processing
payload = {
"product": doc.page_content,
"metadata": {key: value for key, value in doc.metadata.items()}
}
# Create and append point
embeddings.append({
"point_id": str(uuid.uuid4()),
"vectors": vectors,
"sparse_vectors": sparse_vectors,
"payload": payload
})
print(f"Generated {len(embeddings)} embeddings for {product_type}")
return embeddings
def prepare_docs(self, product_type: str, mongodb_conn: MongoDBConnection):
"""
Prepare documents from MongoDB
Args:
product_type: Type of product
mongodb_conn: MongoDB connection object
"""
if not mongodb_conn or mongodb_conn.db is None:
raise ValueError("MongoDB connection not established")
collection_name = mongodb_product_collections.get(product_type)
if not collection_name:
raise ValueError(f"No MongoDB collection mapping for product type: {product_type}")
data = mongodb_conn.get_collection_data(collection_name)
print(f"🗄️ Loaded data from MongoDB collection: {collection_name}")
docs = []
EXCLUDE_FROM_FLATTENING = {"tags"}
for item in data:
content = self.create_content(item)
metadata = self.extract_metadata(item, product_type)
# Create a flat metadata structure for indexing
flat_metadata = {**metadata}
for key, value in metadata.items():
if isinstance(value, dict) and key not in EXCLUDE_FROM_FLATTENING:
flat_metadata.update({f"{key}_{sub_key}": sub_value for sub_key, sub_value in value.items()})
doc = Document(page_content=content, metadata=flat_metadata)
docs.append(doc)
print(f"Prepared {len(docs)} documents")
return docs
def create_content(self, item: Dict) -> str:
"""Tạo document content cho sản phẩm"""
product_name = item.get("Tên sản phẩm", "")
model = item.get("Mã Sản Phẩm", "")
summary_specs = item.get("Tóm tắt TSKT", "")
summary_advantages = item.get("Tóm tắt ưu điểm, tính năng", "")
specs = item.get("Thông số kỹ thuật", "")
advantages = item.get("Nội dung Ưu điểm SP\n(- File word/Excel\n- Đặt tên file theo mã SAP)", "")
instruction = item.get("HDSD", "")
content = (
f"# Tên sản phẩm: {product_name}\n\n"
f"## Mã sản phẩm: {model}\n\n"
f"## Tóm tắt TSKT\n{summary_specs}\n\n"
f"### Thông số kỹ thuật chi tiết\n{specs}\n\n"
f"## Tóm tắt ưu điểm & tính năng\n{summary_advantages}\n\n"
f"### Ưu điểm & tính năng chi tiết\n{advantages}\n"
f"## Hướng dẫn sử dụng: \n{instruction}\n"
)
return content
def extract_metadata(self, item: Dict, product_type: str) -> Dict:
"""Extract metadata from a product item"""
additional_info = ProductEmbedding.process_additional_metadata(item, product_type)
tags = item.get("Tags", {})
common_metadata = {
"prod_id": item.get("Product_ID", None),
"ten_san_pham": item.get("Tên sản phẩm", ""),
"model": item.get("Mã Sản Phẩm", ""),
"danh_muc_l1": item.get("category 1", ""),
"danh_muc_l2": item.get("category 2", ""),
"danh_muc_l3": item.get("category 3", ""),
"url": str(item.get("Link sản phẩm", "")).strip(),
"image_url": item.get("Link ảnh sản phẩm"),
"buy_url": item.get("Link mua hàng online", ""),
"gia": item.get("Giá", ""),
"tags": tags,
**tags,
**additional_info
}
return common_metadata
@staticmethod
def process_additional_metadata(item: Dict[str, Any], product_type) -> Dict[str, Any]:
"""Process an item and extract additional information"""
tags = item.get("Tags", {})
spec_text = item.get("Tóm tắt TSKT", "")
model = item.get("Mã Sản Phẩm", "")
prod_name = item.get("Tên sản phẩm", "")
additional_info = {}
# Extract cong_suat
if "cong_suat" not in tags.keys() or tags["cong_suat"] == "":
power = extract_power(spec_text)
if power is not None:
additional_info["cong_suat"] = power
# Extract based on product type
if product_type == "phich_nuoc":
pass
elif product_type == "chieu_sang":
ceiling_hole_diameter = extract_ceiling_hole_diameter2(spec_text)
if ceiling_hole_diameter is not None:
additional_info["duong_kinh_lo_khoet_tran"] = ceiling_hole_diameter
tinh_nang = extract_tinh_nang(model, prod_name)
if tinh_nang is not None:
additional_info["tinh_nang"] = tinh_nang
elif product_type == "chuyen_dung":
he_thong_hoa_luoi_pha = extract_he_thong_hoa_luoi_pha(prod_name)
if he_thong_hoa_luoi_pha is not None:
additional_info["he_thong_hoa_luoi_pha"] = he_thong_hoa_luoi_pha
elif product_type == "thiet_bi_dien":
dong_danh_dinh = extract_dong_danh_dinh(spec_text)
if dong_danh_dinh is not None:
additional_info["dong_danh_dinh"] = dong_danh_dinh
elif product_type == "nha_thong_minh":
cable_length = extract_cable_length(spec_text)
if cable_length is not None:
additional_info["chieu_dai_day"] = cable_length
plugs_max_current = extract_plugs_max_current(spec_text)
if plugs_max_current is not None:
additional_info["dong_dien_o_cam_toi_da"] = plugs_max_current
voltage = extract_voltage(model)
if voltage is not None:
additional_info["dien_ap"] = voltage
return additional_info
class SolutionEmbedding(DataEmbedding):
def run_embedding(self, solution_type: str, mongodb_conn: MongoDBConnection, batch_size: int = 32):
"""Generate embeddings for a specific solution type from MongoDB"""
embeddings = []
processed_docs, docs_to_embed = self.prepare_docs(solution_type, mongodb_conn)
embedding_contents = [doc.page_content for doc in docs_to_embed]
text_embeddings = self.embed_text_batch(embedding_contents, batch_size)
# Create embeddings with optimized structure creation
for i, doc in enumerate(processed_docs):
embedding_tuple = text_embeddings[i] if i < len(text_embeddings) else None
text_embedding = embedding_tuple[0] if embedding_tuple is not None else None
# Create payload with optimized metadata processing
payload = {
"content": doc.page_content,
"metadata": {key: value for key, value in doc.metadata.items()}
}
# Create and append point
embeddings.append({
"point_id": str(uuid.uuid4()),
"vectors": text_embedding.tolist() if text_embedding is not None else [0.0] * 768,
"payload": payload
})
print(f"Generated {len(embeddings)} embeddings for {solution_type}")
return embeddings
def prepare_docs(self, solution_type: str, mongodb_conn: MongoDBConnection):
"""
Prepare documents from MongoDB
Args:
solution_type: Type of solution
mongodb_conn: MongoDB connection object
"""
if not mongodb_conn or mongodb_conn.db is None:
raise ValueError("MongoDB connection not established")
collection_name = mongodb_solution_collections.get(solution_type)
if not collection_name:
raise ValueError(f"No MongoDB collection mapping for solution type: {solution_type}")
data = mongodb_conn.get_collection_data(collection_name)
print(f"🗄️ Loaded solution data from MongoDB collection: {collection_name}")
docs = []
docs_to_embed = []
for item in data:
# Assuming the MongoDB document structure matches the JSON structure
for key, val in item.items():
if key in ["_id", "san_pham"]: # Skip MongoDB _id and san_pham
continue
if isinstance(val, list):
for d in val:
page_content = ". ".join([f"{k}: {v}" for k, v in d.items()])
docs.append(
Document(
page_content=page_content,
metadata={"category": key}
)
)
if key != "faq":
docs_to_embed.append(
Document(
page_content=page_content,
metadata={"category": key}
)
)
else:
page_content = f"Câu hỏi: {d.get('Câu hỏi', '')}"
docs_to_embed.append(
Document(
page_content=page_content,
metadata={"category": key}
)
)
elif isinstance(val, dict):
for k, v in val.items():
docs_to_embed.append(Document(page_content=f"{k}: {v}", metadata={"category": key}))
docs.append(Document(page_content=f"{k}: {v}", metadata={"category": key}))
print(f"Prepared {len(docs)} documents")
return docs, docs_to_embed
"""=================CLASS INDEXING========================"""
class ProductIndexing:
def __init__(self, vector_db_client=client):
super().__init__()
self.client = vector_db_client
self.mongodb_conn = None
def setup_mongodb(self, connection_string: str = None):
"""Setup MongoDB connection"""
self.mongodb_conn = MongoDBConnection(connection_string)
return self.mongodb_conn.connect()
def index(
self,
embeddings: List[Dict],
collection_name: str,
batch_size: int = 100
):
"""Index embeddings to a Qdrant collection in batches"""
total_docs = len(embeddings)
success_count = 0
error_count = 0
print(f"Adding {total_docs} multimodal documents to '{collection_name}'...")
for i in range(0, total_docs, batch_size):
batch = embeddings[i:i+batch_size]
points = []
try:
for embedding_data in batch:
combined_vectors = embedding_data["vectors"].copy()
combined_vectors.update(embedding_data["sparse_vectors"])
point = qdrant_client.http.models.PointStruct(
id=embedding_data["point_id"],
vector=combined_vectors,
payload=embedding_data["payload"]
)
points.append(point)
if points:
self.client.upsert(collection_name=collection_name, points=points)
success_count += len(batch)
text_count = sum(1 for p in points if any(v != 0 for v in p.vector["product"]))
image_count = sum(1 for p in points if any(v != 0 for v in p.vector["image"]))
print(f"✅ Batch {i//batch_size + 1}: {len(batch)} docs | {text_count} product | {image_count} images")
else:
print(f"⚠️ Batch {i//batch_size + 1}: No valid points to upload")
except Exception as e:
error_count += len(batch)
print(f"❌ Batch {i//batch_size + 1} failed: {e}")
print(f"\n📊 Final Results:")
print(f" ✅ Successful: {success_count}")
print(f" ❌ Failed: {error_count}")
print(f" 📈 Success Rate: {success_count/(success_count+error_count)*100:.1f}%")
def run_indexing(self, reload: bool = True, hybrid_mode: bool = True):
"""
Index all product data from MongoDB into Qdrant collections.
Args:
reload: Whether to recreate collections
hybrid_mode: Whether to use hybrid text embedding (BGEM3)
"""
if reload:
try:
for collection in product_collections:
self.client.recreate_collection(
collection_name=collection,
vectors_config=product_vectors_config,
sparse_vectors_config=sparse_vectors_config
)
print("All product collections recreated.")
except Exception as e:
print(f"Error while recreating collections: {e}")
return
# Setup MongoDB connection
if not self.mongodb_conn:
if not self.setup_mongodb():
print("❌ Failed to connect to MongoDB. Aborting indexing.")
return
# Create embedding processor
embed_object = ProductEmbedding()
for collection, product_type in zip(product_collections, product_types):
print(f"\n🔄 Processing {product_type} data from MongoDB...")
# Generate embeddings for specific product type
embeddings = embed_object.run_embedding(
product_type=product_type,
mongodb_conn=self.mongodb_conn,
hybrid_mode=hybrid_mode
)
# Index embeddings to specific collection
self.index(embeddings, collection)
self._create_payload_indexes_for_product_type(product_type, collection)
# Close MongoDB connection
if self.mongodb_conn:
self.mongodb_conn.close()
self.mongodb_conn = None
def indexing_single_product_type(self, product_type: str, collection_name: str, hybrid_mode: bool = True) -> str:
"""
Indexing a single product group into its Qdrant collection from MongoDB
Args:
product_type: Type of product
collection_name: Qdrant collection name
hybrid_mode: Whether to use hybrid text embedding (BGEM3)
"""
buffer = io.StringIO()
sys.stdout = buffer
try:
self.client.recreate_collection(
collection_name=collection_name,
vectors_config=product_vectors_config,
sparse_vectors_config=sparse_vectors_config
)
print(f"Collection {collection_name} created")
# Setup MongoDB connection
if not self.mongodb_conn:
if not self.setup_mongodb():
print("❌ Failed to connect to MongoDB")
sys.stdout = sys.__stdout__
return buffer.getvalue()
# Create embedding processor
embed_object = ProductEmbedding()
print(f"\n🔄 Processing {product_type} data from MongoDB...")
embeddings = embed_object.run_embedding(
product_type=product_type,
mongodb_conn=self.mongodb_conn,
hybrid_mode=hybrid_mode
)
self.index(embeddings, collection_name)
# Close MongoDB connection
if self.mongodb_conn:
self.mongodb_conn.close()
self.mongodb_conn = None
except Exception as e:
print(f"Error while indexing product type {product_type}: {e}")
self._create_payload_indexes_for_product_type(product_type, collection_name)
sys.stdout = sys.__stdout__
return buffer.getvalue()
def _create_payload_indexes_for_product_type(self, product_type: str, collection_name: str):
"""Create payload indexes based on product type field schemas"""
print(f"🔍 Creating payload indexes for {product_type}...")
try:
# Common fields across all product types
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.danh_muc_l2",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.danh_muc_l3",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.gia",
field_schema=qdrant_client.http.models.IntegerIndexParams(type="integer")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.cong_suat",
field_schema=qdrant_client.http.models.FloatIndexParams(type="float")
)
# Product-specific fields
if product_type == "phich_nuoc":
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.dung_tich",
field_schema=qdrant_client.http.models.FloatIndexParams(type="float")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.chat_lieu",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.tinh_nang",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
elif product_type == "chieu_sang":
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.kich_thuoc",
field_schema=qdrant_client.http.models.FloatIndexParams(type="float")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.duong_kinh_lo_khoet_tran",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.tinh_nang",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
elif product_type == "chuyen_dung":
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.nhiet_do_mau",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.dien_ap",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.cong_nghe_led",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.loai_den",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.he_thong_hoa_luoi",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
elif product_type == "thiet_bi_dien":
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.dong_danh_dinh",
field_schema=qdrant_client.http.models.FloatIndexParams(type="float")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.anh_sang",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.so_hat",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.so_cuc",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.modules",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.doi_tuong",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.cong_nghe",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.loai_den",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.san_pham",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
elif product_type == "nha_thong_minh":
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.chieu_dai_day",
field_schema=qdrant_client.http.models.FloatIndexParams(type="float")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.lo_khoet_tran",
field_schema=qdrant_client.http.models.IntegerIndexParams(type="integer")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.nut_bam",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.dong_dien_o_cam_toi_da",
field_schema=qdrant_client.http.models.IntegerIndexParams(type="integer")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.dien_ap",
field_schema=qdrant_client.http.models.IntegerIndexParams(type="integer")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.hinh_dang",
field_schema=qdrant_client.http.models.KeywordIndexParams(type="keyword")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.tinh_nang",
field_schema=qdrant_client.http.models.TextIndexParams(type="text")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.goc_chieu",
field_schema=qdrant_client.http.models.TextIndexParams(type="text")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.combo",
field_schema=qdrant_client.http.models.TextIndexParams(type="text")
)
self.client.create_payload_index(
collection_name=collection_name,
field_name="metadata.anh_sang",
field_schema=qdrant_client.http.models.TextIndexParams(type="text")
)
print(f"✅ All payload indexes created for {product_type}")
except Exception as e:
print(f"❌ Error creating payload indexes for {product_type}: {e}")
class SolutionIndexing:
def __init__(self, vector_db_client=client):
super().__init__()
self.client = vector_db_client
self.mongodb_conn = None
def setup_mongodb(self, connection_string: str = None):
"""Setup MongoDB connection"""
self.mongodb_conn = MongoDBConnection(connection_string)
return self.mongodb_conn.connect()
def index(
self,
embeddings: List[Dict],
collection_name: str,
batch_size: int = 10
):
"""Index embeddings to a Qdrant collection in batches"""
total_docs = len(embeddings)
success_count = 0
error_count = 0
print(f"Adding {total_docs} solution documents to '{collection_name}'...")
for i in range(0, total_docs, batch_size):
batch = embeddings[i:i+batch_size]
points = []
try:
for embedding_data in batch:
# Create Qdrant point from embedding data
point = qdrant_client.http.models.PointStruct(
id=embedding_data["point_id"],
vector=embedding_data["vectors"],
payload=embedding_data["payload"]
)
points.append(point)
# Upload batch to Qdrant
if points:
self.client.upsert(collection_name=collection_name, points=points)
success_count += len(batch)
# Count successful embeddings
text_count = sum(1 for p in points if any(v != 0 for v in p.vector))
print(f"✅ Batch {i//batch_size + 1}: {len(batch)} docs | {text_count} contents")
else:
print(f"⚠️ Batch {i//batch_size + 1}: No valid points to upload")
except Exception as e:
error_count += len(batch)
print(f"❌ Batch {i//batch_size + 1} failed: {e}")
print(f"\n📊 Final Results:")
print(f" ✅ Successful: {success_count}")
print(f" ❌ Failed: {error_count}")
print(f" 📈 Success Rate: {success_count/(success_count+error_count)*100:.1f}%")
def run_indexing(self, reload: bool = True):
"""Index all solution data from MongoDB into Qdrant collections."""
if reload:
try:
for collection in solution_collections:
self.client.recreate_collection(
collection_name=collection,
vectors_config=qdrant_client.http.models.VectorParams(
size=768,
distance=qdrant_client.http.models.Distance.COSINE,
)
)
print("All solution collections recreated.")
except Exception as e:
print(f"Error while recreating collections: {e}")
return
# Setup MongoDB connection
if not self.mongodb_conn:
if not self.setup_mongodb():
print("❌ Failed to connect to MongoDB. Aborting indexing.")
return
# Create embedding processor
embed_object = SolutionEmbedding()
for collection, solution_type in zip(solution_collections, solution_types):
print(f"\n🔄 Processing {solution_type} data from MongoDB...")
embeddings = embed_object.run_embedding(solution_type, self.mongodb_conn)
self.index(embeddings, collection)
# Close MongoDB connection
if self.mongodb_conn:
self.mongodb_conn.close()
self.mongodb_conn = None
def indexing_single_solution(self, solution: str, collection_name: str) -> str:
"""Indexing a single solution into its Qdrant collection from MongoDB"""
buffer = io.StringIO()
sys.stdout = buffer
try:
self.client.recreate_collection(
collection_name=collection_name,
vectors_config=qdrant_client.http.models.VectorParams(
size=768,
distance=qdrant_client.http.models.Distance.COSINE,
)
)
print(f"Collection {collection_name} created")
# Setup MongoDB connection
if not self.mongodb_conn:
if not self.setup_mongodb():
print("❌ Failed to connect to MongoDB")
sys.stdout = sys.__stdout__
return buffer.getvalue()
# Create embedding processor
embed_object = SolutionEmbedding()
print(f"\n🔄 Processing {solution} data from MongoDB...")
embeddings = embed_object.run_embedding(solution, self.mongodb_conn)
self.index(embeddings, collection_name)
# Close MongoDB connection
if self.mongodb_conn:
self.mongodb_conn.close()
self.mongodb_conn = None
except Exception as e:
print(f"Error while recreating collection and indexing solution {solution}: {e}")
sys.stdout = sys.__stdout__
return buffer.getvalue()
"""=================GRADIO UI========================"""
def create_indexing_interface():
"""Create Gradio interface for indexing from MongoDB"""
product_indexing = ProductIndexing()
solution_indexing = SolutionIndexing()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🗄️ Qdrant Data Indexing System (MongoDB)")
gr.Markdown("Recreate Qdrant Collections and Index Data from MongoDB Atlas")
output_box = gr.Textbox(lines=15, label="📋 Logs", interactive=False)
# gr.Markdown("---")
# gr.Markdown("## 🏢 Giải pháp (Solutions)")
# with gr.Row():
# gr.Button("GP Ngư nghiệp").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("ngu_nghiep"), gr.State(QDRANT_COLLECTION_NAME_GPNGUNGHIEP)],
# outputs=output_box)
# gr.Button("GP Học đường").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("hoc_duong"), gr.State(QDRANT_COLLECTION_NAME_GPHOCDUONG)],
# outputs=output_box)
# gr.Button("GP Nhà thông minh").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("nha_thong_minh"), gr.State(QDRANT_COLLECTION_NAME_GPNHATHONGMINH)],
# outputs=output_box)
# gr.Button("GP Nông nghiệp CNC").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("nong_nghiep_cnc"), gr.State(QDRANT_COLLECTION_NAME_GPNNCNC)],
# outputs=output_box)
# with gr.Row():
# gr.Button("GP Cảnh quan").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("canh_quan"), gr.State(QDRANT_COLLECTION_NAME_GPCANHQUAN)],
# outputs=output_box)
# gr.Button("GP HTĐ NLMT").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("nlmt"), gr.State(QDRANT_COLLECTION_NAME_GPNLMT)],
# outputs=output_box)
# gr.Button("GP Đường phố").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("duong_pho"), gr.State(QDRANT_COLLECTION_NAME_GPDUONGPHO)],
# outputs=output_box)
# gr.Button("GP Văn phòng công sở").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("van_phong_cong_so"), gr.State(QDRANT_COLLECTION_NAME_GPVPCS)],
# outputs=output_box)
# with gr.Row():
# gr.Button("GP Nhà máy CN").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("nha_may_cong_nghiep"), gr.State(QDRANT_COLLECTION_NAME_GPNMCN)],
# outputs=output_box)
# gr.Button("GP Nhà ở xã hội").click(
# solution_indexing.indexing_single_solution,
# inputs=[gr.State("nha_o_xa_hoi"), gr.State(QDRANT_COLLECTION_NAME_GPNOXH)],
# outputs=output_box)
# def index_all_solutions():
# buffer = io.StringIO()
# sys.stdout = buffer
# solution_indexing.run_indexing(reload=True)
# sys.stdout = sys.__stdout__
# return buffer.getvalue()
# gr.Button("✨ Tất cả GP", variant="primary").click(
# index_all_solutions,
# outputs=output_box)
gr.Markdown("---")
gr.Markdown("## 📦 Sản phẩm (Products)")
# Individual product buttons
with gr.Row():
btn_phich = gr.Button("SP Phích nước")
btn_chieu_sang = gr.Button("SP Chiếu sáng")
btn_chuyen_dung = gr.Button("SP Chuyên dụng")
btn_ntm = gr.Button("SP Nhà thông minh")
btn_thiet_bi = gr.Button("SP Thiết bị điện")
with gr.Row():
btn_all_products = gr.Button("✨ Tất cả SP", variant="primary", scale=2)
# Setup click handlers
btn_phich.click(
product_indexing.indexing_single_product_type,
inputs=[gr.State("phich_nuoc"), gr.State(QDRANT_COLLECTION_NAME_SPPHICHNUOC), gr.State(True)],
outputs=output_box)
btn_chieu_sang.click(
product_indexing.indexing_single_product_type,
inputs=[gr.State("chieu_sang"), gr.State(QDRANT_COLLECTION_NAME_SPCHIEUSANG), gr.State(True)],
outputs=output_box)
btn_chuyen_dung.click(
product_indexing.indexing_single_product_type,
inputs=[gr.State("chuyen_dung"), gr.State(QDRANT_COLLECTION_NAME_SPCHUYENDUNG), gr.State(True)],
outputs=output_box)
btn_ntm.click(
product_indexing.indexing_single_product_type,
inputs=[gr.State("nha_thong_minh"), gr.State(QDRANT_COLLECTION_NAME_SPNHATHONGMINH), gr.State(True)],
outputs=output_box)
btn_thiet_bi.click(
product_indexing.indexing_single_product_type,
inputs=[gr.State("thiet_bi_dien"), gr.State(QDRANT_COLLECTION_NAME_SPTHIETBIDIEN), gr.State(True)],
outputs=output_box)
def index_all_products():
buffer = io.StringIO()
sys.stdout = buffer
product_indexing.run_indexing(reload=True, hybrid_mode=True)
sys.stdout = sys.__stdout__
return buffer.getvalue()
btn_all_products.click(
index_all_products,
outputs=output_box)
return demo
if __name__ == "__main__":
demo = create_indexing_interface()
demo.launch() |