File size: 27,888 Bytes
a519263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7743de
a519263
 
 
 
 
 
d916930
a519263
 
 
 
 
 
 
d916930
a519263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d916930
a519263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d916930
a519263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d916930
 
a519263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
import sys
import os
from pathlib import Path

import requests
import re
import tempfile
import json
import math
import time
import warnings
from typing import Dict, List
from urllib3.exceptions import IncompleteRead
from datetime import datetime

import docling
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
import pandas as pd
import gradio as gr
from pymongo import MongoClient, UpdateOne
from pymongo.errors import ConnectionFailure, OperationFailure

from data_helper import *
from config import MONGODB_URI, MONGODB_DATABASE

# Suppress PyTorch DataLoader pin_memory warning on MPS
warnings.filterwarnings("ignore", message=".*pin_memory.*not supported on MPS.*")

class MongoDBHandler:
    """Handler for MongoDB operations"""
    
    def __init__(self, connection_string: str = None, database_name: str = MONGODB_DATABASE):
        """
        Initialize MongoDB connection
        
        Args:
            connection_string: MongoDB connection string (default: localhost)
            database_name: Name of the database to use
        """
        if connection_string is None:
            connection_string = "mongodb://localhost:27017/"
        
        self.connection_string = connection_string
        self.database_name = database_name
        self.client = None
        self.db = None
        
    def connect(self):
        """Establish connection to MongoDB"""
        try:
            self.client = MongoClient(self.connection_string, serverSelectionTimeoutMS=5000)
            # Test connection
            self.client.admin.command('ping')
            self.db = self.client[self.database_name]
            print(f"✅ Connected to MongoDB database: {self.database_name}")
            return True
        except ConnectionFailure as e:
            print(f"❌ Failed to connect to MongoDB: {e}")
            return False
        except Exception as e:
            print(f"❌ Unexpected error connecting to MongoDB: {e}")
            return False
    
    def disconnect(self):
        """Close MongoDB connection"""
        if self.client is not None:
            self.client.close()
            print("🔌 Disconnected from MongoDB")
    
    def get_collection_name(self, category: str) -> str:
        """Map category name to collection name"""
        collection_mapping = {
            "Sản phẩm nhà thông minh": "sp_nha_thong_minh",
            "Đèn LED": "sp_chieu_sang",
            "Chiếu sáng chuyên dụng": "sp_chuyen_dung",
            "Thiết bị điện": "sp_thiet_bi_dien",
            "Phích nước": "sp_phich_nuoc",
        }
        return collection_mapping.get(category, "unknown_products")
    
    def upload_data(self, data: List[Dict], collection_name: str, upsert: bool = True) -> Dict:
        """
        Upload data to MongoDB collection
        
        Args:
            data: List of product dictionaries
            collection_name: Name of the collection
            upsert: If True, update existing documents or insert new ones
        
        Returns:
            Dictionary with upload statistics
        """
        if self.db is None:
            return {"success": False, "error": "Not connected to database"}
        
        if not data:
            return {"success": False, "error": "No data to upload"}
        
        try:
            collection = self.db[collection_name]
            
            # Add metadata
            timestamp = datetime.utcnow()
            for item in data:
                item['_updated_at'] = timestamp
                if '_created_at' not in item:
                    item['_created_at'] = timestamp
            
            if upsert:
                # Use bulk write with upsert for better performance
                operations = []
                for item in data:
                    product_id = item.get('Product_ID')
                    if product_id:
                        operations.append(
                            UpdateOne(
                                {'Product_ID': product_id},
                                {'$set': item},
                                upsert=True
                            )
                        )
                
                if operations:
                    result = collection.bulk_write(operations)
                    return {
                        "success": True,
                        "collection": collection_name,
                        "inserted": result.upserted_count,
                        "modified": result.modified_count,
                        "matched": result.matched_count,
                        "total": len(data)
                    }
                else:
                    return {"success": False, "error": "No valid product IDs found"}
            else:
                # Simple insert (may cause duplicates)
                result = collection.insert_many(data)
                return {
                    "success": True,
                    "collection": collection_name,
                    "inserted": len(result.inserted_ids),
                    "total": len(data)
                }
                
        except OperationFailure as e:
            return {"success": False, "error": f"MongoDB operation failed: {e}"}
        except Exception as e:
            return {"success": False, "error": f"Unexpected error: {e}"}
    
    def test_connection(self) -> str:
        """Test MongoDB connection and return status"""
        try:
            if self.connect():
                # Get database stats
                stats = self.db.command("dbstats")
                collections = self.db.list_collection_names()
                self.disconnect()
                return f"✅ Connected successfully!\n📊 Database: {self.database_name}\n📁 Collections: {len(collections)}\n💾 Size: {stats.get('dataSize', 0) / 1024 / 1024:.2f} MB"
            else:
                return "❌ Connection failed"
        except Exception as e:
            return f"❌ Error: {str(e)}"


class DataProcessing:
    def __init__(self):
        pass
    
    def get_data_from_excel_file(self, excel_path, key_match, collection_name, 
                                  processor_type="docling", mongo_handler=None):
        """
        Process Excel file and upload to MongoDB
        
        Args:
            excel_path: Path to Excel file
            key_match: Category to match
            collection_name: MongoDB collection name
            processor_type: Type of PDF processor
            mongo_handler: MongoDBHandler instance (required)
        """
        if not mongo_handler:
            return "❌ MongoDB handler not provided"
        
        all_sheets = pd.read_excel(excel_path, sheet_name=None, header=1)
        sheet_names = list(all_sheets.keys())
        sheets = {k: all_sheets[k] for k in sheet_names[2:]}

        data = []

        for sheet_name, df in sheets.items():
            df.columns = df.columns.str.strip()
            if "category 1" not in df.columns:
                df = pd.read_excel(excel_path, sheet_name=sheet_name, header=0)
                df.columns = df.columns.str.strip()
                
            if "category 1" in df.columns:
                filtered = df[df["category 1"].astype(str).str.replace("\n", " ").str.strip() == key_match]
                data.append(filtered)

        if data:
            result_df = pd.concat(data, ignore_index=True)
            result_df = result_df.where(pd.notnull(result_df), None)
            result_df["HDSD"] = None
            
            cols_to_drop = [col for col in result_df.columns if col.strip().lower().startswith("unnamed") or col.strip() == "a" or col == "STT"]
            result_df = result_df.drop(columns=cols_to_drop, errors='ignore')
            
            cols_to_replace = [col for col in result_df.columns if col not in ["Tóm tắt ưu điểm, tính năng", "Thông số kỹ thuật", "Nội dung Ưu điểm SP", "Ưu điểm"]]
            result_df[cols_to_replace] = result_df[cols_to_replace].replace('\n', ' ', regex=True)

            # Replace "none" values with None
            result_df.loc[result_df["Thông số kỹ thuật"] == "none", "Thông số kỹ thuật"] = None
            result_df.loc[result_df["Tóm tắt ưu điểm, tính năng"] == "none", "Tóm tắt ưu điểm, tính năng"] = None
            result_df.loc[result_df["Tóm tắt TSKT"] == "none", "Tóm tắt TSKT"] = None
            result_df.loc[result_df["Nội dung Ưu điểm SP"] == "none", "Nội dung Ưu điểm SP"] = None
                
            result_df = result_df.map(lambda x: x.strip() if isinstance(x, str) else x)
            result_df.drop_duplicates(subset=["Product_ID"], inplace=True)
            result_df = self.data_normalization(result_df=result_df)
            data = result_df.to_dict(orient="records")
            data = self.convert_floats(data)
            data = self.replace_nan_with_none(data)
            
            # Process instructions based on processor type
            if processor_type == "docling_with_ocr":
                data = self.process_instruction_with_tesseract(data)
            else:
                data = self.process_instruction(data)
            
            # Upload to MongoDB
            if not mongo_handler.connect():
                return "❌ Failed to connect to MongoDB"
            
            result = mongo_handler.upload_data(data, collection_name, upsert=True)
            mongo_handler.disconnect()
            
            if result.get("success"):
                return f"✅ Uploaded to MongoDB collection '{result['collection']}':\n" \
                       f"   • Total records: {result['total']}\n" \
                       f"   • Inserted: {result.get('inserted', 0)}\n" \
                       f"   • Updated: {result.get('modified', 0)}"
            else:
                return f"❌ MongoDB upload failed: {result.get('error', 'Unknown error')}"
        else:
            return f"❌ Data not found for key: {key_match}"

    def convert_floats(self, obj):
        if isinstance(obj, float) and obj.is_integer():
            return int(obj)
        elif isinstance(obj, list):
            return [self.convert_floats(i) for i in obj]
        elif isinstance(obj, dict):
            return {k: self.convert_floats(v) for k, v in obj.items()}
        else:
            return obj
        
    def strip_redundant_space(self, text):
        cleaned_text = " ".join(text.strip().split())
        return cleaned_text
    
    def convert_tag_to_dict(self, tag_str: str) -> dict:
        if not isinstance(tag_str, str) or not tag_str.strip().startswith("{"):
            return {}

        try:
            fixed = re.sub(r'([{,]\s*)(\w+)\s*:', r'\1"\2":', tag_str)
            raw_pairs = fixed.strip('{} ').split(',')
            raw_pairs = [pair.strip() for pair in raw_pairs if pair.strip()]
            result = {}

            current_key = None
            for pair in raw_pairs:
                if ':' in pair:
                    key, value = pair.split(':', 1)
                    key = key.strip().strip('"')
                    value = value.strip()

                    pattern = r',\s[A-Z]'
                    match = re.search(pattern, value)
                    if match:
                        values = [v.strip() for v in value.split(',')]
                    else:
                        values = value
                    result[key] = values
                    current_key = key
                elif current_key:
                    previous_value = result[current_key]
                    if isinstance(previous_value, list):
                        result[current_key].append(pair.strip())
                    else:
                        result[current_key] = [previous_value, pair.strip()]

            return result

        except Exception as e:
            print(f"Error parse tag: {tag_str} -> {e}")
            return {}

    def convert_tags_to_numeric(self, tags_dict):
        keys_to_convert = ["dung_tich", "cong_suat", "lo_khoet_tran", "so_cuc", "so_hat", "modules", "cuon_day", "kich_thuoc"]

        new_tags = {}
        for key, value in tags_dict.items():
            if key in keys_to_convert:
                match = re.search(r'([\d.]+)', str(value))
                if match:
                    num = float(match.group(1))
                    new_tags[key] = int(num) if num.is_integer() else num
                else:
                    new_tags[key] = value 
            else:
                new_tags[key] = value
        return new_tags
    
    def data_normalization(self, result_df):
        if "Tags" in result_df.columns:
            result_df["Tags"] = result_df["Tags"].astype(str).str.lower().apply(self.convert_tag_to_dict)
            result_df["Tags"] = result_df["Tags"].apply(self.convert_tags_to_numeric)
                        
        if "Giá" in result_df.columns:
            result_df["Giá"] = result_df["Giá"].apply(lambda x: "Liên hệ" if x == 0 else x)

        if "Tên sản phẩm" in result_df.columns:
            result_df["Tên sản phẩm"] = result_df["Tên sản phẩm"].apply(self.strip_redundant_space)

        for col_name in result_df.columns:
            if col_name in ["Tóm tắt TSKT", "Thông số kỹ thuật"]:
                result_df[col_name] = result_df[col_name].astype(str).str.lower().str.strip()

        return result_df
    
    def replace_nan_with_none(self, obj):
        if isinstance(obj, float) and math.isnan(obj):
            return None
        elif isinstance(obj, dict):
            return {k: self.replace_nan_with_none(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [self.replace_nan_with_none(i) for i in obj]
        else:
            return obj

    @staticmethod
    def download_pdf_with_retry(url, max_retries=3, timeout=30):
        """Download PDF with retry logic and better error handling"""
        for attempt in range(max_retries):
            try:
                print(f"Downloading PDF (attempt {attempt + 1}/{max_retries})...")
                
                session = requests.Session()
                session.headers.update({
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
                })
                
                response = session.get(url, stream=True, timeout=timeout)
                response.raise_for_status()
                
                content_length = response.headers.get('content-length')
                if content_length:
                    print(f"Expected file size: {int(content_length):,} bytes")
                
                content = b''
                chunk_size = 8192
                downloaded = 0
                
                for chunk in response.iter_content(chunk_size=chunk_size):
                    if chunk:
                        content += chunk
                        downloaded += len(chunk)
                
                print(f"\nDownload completed: {len(content):,} bytes")
                return content
                
            except (requests.exceptions.RequestException, IncompleteRead, ConnectionError) as e:
                print(f"Download attempt {attempt + 1} failed: {e}")
                if attempt < max_retries - 1:
                    wait_time = 2 ** attempt
                    print(f"Waiting {wait_time} seconds before retry...")
                    time.sleep(wait_time)
                else:
                    print("All download attempts failed")
                    raise e

    @staticmethod
    def process_pdf_with_docling(url):
        """Process PDF from URL using Docling for better structure extraction"""
        try:
            pdf_content = DataProcessing.download_pdf_with_retry(url)
            
            with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
                tmp_file.write(pdf_content)
                tmp_path = tmp_file.name
            
            print(f"PDF saved to temporary file: {tmp_path}")
            
            pipeline_options = PdfPipelineOptions()
            pipeline_options.do_ocr = False
            pipeline_options.do_table_structure = False
            
            converter = DocumentConverter(
                format_options={
                    InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
                }
            )
            
            print("Converting document with Docling...")
            result = converter.convert(tmp_path)
            
            os.unlink(tmp_path)
            print("Temporary file cleaned up")
            
            return result
            
        except Exception as e:
            print(f"Error processing PDF with Docling from URL {url}: {e}")
            return None

    @staticmethod
    def extract_content_from_docling_result(docling_result):
        """Extract content from Docling result in a more robust way"""
        if not docling_result:
            return None
        
        try:
            doc = docling_result.document
            
            try:
                markdown_content = doc.export_to_markdown()
                return {'markdown': markdown_content}
            except Exception as e:
                print(f"Markdown export failed: {e}")
            
            if hasattr(doc, 'main_text'):
                return {'text': doc.main_text}
            
            if hasattr(doc, 'body') and doc.body:
                content = []
                for element in doc.body:
                    content.append(str(element))
                return {'text': '\n'.join(content)}
            
            if hasattr(doc, 'elements') and doc.elements:
                content = []
                for element in doc.elements:
                    content.append(str(element))
                return {'text': '\n'.join(content)}
            
            return {'error': 'No accessible content found'}
            
        except Exception as e:
            return {'error': f"Error extracting content: {e}"}
    
    def process_instruction(self, data):
        """Lấy thông tin hướng dẫn sử dụng"""
        tmp_data = data[:]
        for item in tmp_data:
            instruction_url = item.get("Link file HDSD", None)
            if not instruction_url:
                print("No instruction URL found, skipping...")
                item["HDSD"] = "" 
                continue

            if "https://" not in instruction_url and "http://" not in instruction_url:
                print("Wrong URL, but has instruction info")
                item["HDSD"] = instruction_url 
                continue

            if "hdsd" not in instruction_url or "Khong" in instruction_url:
                print("invalid instruction url/content")
                item["HDSD"] = "" 
                continue

            raw_result = DataProcessing.process_pdf_with_docling(instruction_url)
            if raw_result:
                extract_result = DataProcessing.extract_content_from_docling_result(raw_result)
                if 'markdown' in extract_result.keys():
                    item["HDSD"] = re.sub(r"<!--\s*image\s*-->", '', extract_result['markdown'], flags=re.IGNORECASE).strip()
                elif 'text' in extract_result.keys():
                    item["HDSD"] = re.sub(r"<!--\s*image\s*-->", '', extract_result['text'], flags=re.IGNORECASE).strip()
        
        return tmp_data


def process_single_category(excel_path, category_name, processor_type, 
                           mongo_connection, mongo_database,
                           progress=gr.Progress()):
    """Process a single product category and upload to MongoDB"""
    
    if excel_path is None:
        return "❌ Please upload an Excel file first"
    
    # Category mapping
    category_mapping = {
        "Sản phẩm nhà thông minh": ("Sản phẩm nhà thông minh", "sp_nha_thong_minh"),
        "Đèn LED": ("Đèn LED", "sp_chieu_sang"),
        "Chiếu sáng chuyên dụng": ("Chiếu sáng chuyên dụng", "sp_chuyen_dung"),
        "Thiết bị điện": ("Thiết bị điện", "sp_thiet_bi_dien"),
        "Phích nước": ("Phích nước", "sp_phich_nuoc"),
    }
    
    if category_name not in category_mapping:
        return f"❌ Unknown category: {category_name}"
    
    key_match, collection_name = category_mapping[category_name]
    
    try:
        progress(0.1, desc="Initializing data processor...")
        dp = DataProcessing()
        
        # Initialize MongoDB handler
        mongo_handler = MongoDBHandler(
            connection_string=mongo_connection if mongo_connection else None,
            database_name=mongo_database if mongo_database else MONGODB_DATABASE
        )
        
        progress(0.3, desc=f"Processing {category_name} with {processor_type}...")
        result = dp.get_data_from_excel_file(
            excel_path=excel_path,
            key_match=key_match,
            collection_name=collection_name,
            processor_type=processor_type,
            mongo_handler=mongo_handler
        )
        
        progress(1.0, desc="Processing completed!")
        return result
        
    except Exception as e:
        return f"❌ Error processing {category_name}: {str(e)}"


def process_all_categories(excel_path, processor_type, 
                          mongo_connection, mongo_database, progress=gr.Progress()):
    """Process all product categories and upload to MongoDB"""
    if excel_path is None:
        return "❌ Please upload an Excel file first"
    
    categories = [
        "Sản phẩm nhà thông minh",
        "Đèn LED", 
        "Chiếu sáng chuyên dụng",
        "Thiết bị điện",
        "Phích nước"
    ]
    
    results = []
    total_categories = len(categories)
    
    for i, category in enumerate(categories):
        progress((i + 1) / total_categories, desc=f"Processing {category}...")
        result = process_single_category(
            excel_path, category, processor_type,
            mongo_connection, mongo_database
        )
        results.append(f"{category}: {result}")
        
    return "\n".join(results)


def test_mongo_connection(connection_string, database_name):
    """Test MongoDB connection"""
    if not connection_string:
        connection_string = "mongodb://localhost:27017/"
    if not database_name:
        database_name = MONGODB_DATABASE
    
    handler = MongoDBHandler(connection_string, database_name)
    return handler.test_connection()


def create_processing_interface():
    """Create Gradio interface with MongoDB-only storage"""
    with gr.Blocks(title="Data Processing - Product Metadata Extractor") as demo:
        gr.Markdown("# 📊 Product Data Processing")
        gr.Markdown("Extract and process product metadata from Excel files and upload to MongoDB")
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📤 Upload Excel File")
                excel_upload = gr.File(
                    label="Upload Excel File",
                    file_types=[".xlsx", ".xls"],
                    type="filepath"
                )
                
                gr.Markdown("### ⚙️ Processing Settings")
                processor_dropdown = gr.Dropdown(
                    choices=["docling"],
                    value="docling",
                    label="PDF Processor Type",
                    info="Using basic docling for fast processing"
                )
                
                category_dropdown = gr.Dropdown(
                    choices=[
                        "Sản phẩm nhà thông minh",
                        "Đèn LED",
                        "Chiếu sáng chuyên dụng", 
                        "Thiết bị điện",
                        "Phích nước"
                    ],
                    value="Sản phẩm nhà thông minh",
                    label="Product Category",
                    info="Select which product category to process"
                )
                
                gr.Markdown("### 🗄️ MongoDB Configuration")
                mongo_connection = gr.Textbox(
                    label="MongoDB Connection String",
                    placeholder="mongodb+srv://<username>:<password>@cluster.mongodb.net/?retryWrites=true&w=majority",
                    value=MONGODB_URI,
                    info="MongoDB connection string"
                )
                mongo_database = gr.Textbox(
                    label="Database Name",
                    placeholder="MONGODB_DATABASE",
                    value=MONGODB_DATABASE,
                    info="Name of the MongoDB database"
                )
                test_connection_btn = gr.Button("🔌 Test Connection", size="sm")
                connection_status = gr.Textbox(
                    label="Connection Status",
                    interactive=False,
                    lines=3
                )
                
            with gr.Column(scale=2):
                output_box = gr.Textbox(
                    lines=15,
                    label="📋 Processing Log",
                    placeholder="Processing results will appear here..."
                )

        gr.Markdown("### 🚀 Actions")
        with gr.Row():
            process_single_btn = gr.Button("🔄 Process Selected Category", variant="primary")
            process_all_btn = gr.Button("🔄 Process All Categories", variant="secondary")
            
        gr.Markdown("### 📖 Information")
        with gr.Accordion("MongoDB Collections", open=False):
            gr.Markdown("""
            **📦 Collections**: 
            - `sp_nha_thong_minh` - Sản phẩm nhà thông minh
            - `sp_chieu_sang` - Đèn LED
            - `sp_chuyen_dung` - Chiếu sáng chuyên dụng
            - `sp_thiet_bi_dien` - Thiết bị điện
            - `sp_phich_nuoc` - Phích nước
            
            **🔄 Upsert Logic**:
            - Existing records are updated based on `Product_ID`
            - New records are inserted automatically
            - Timestamps `_created_at` and `_updated_at` are managed automatically
            """)
        
        with gr.Accordion("Processor Types", open=False):
            gr.Markdown("""
            **🔹 docling**: Basic PDF text extraction
            - Fast processing
            - Good for text-based PDFs
            - No OCR capabilities
            """)
        
        # Event handlers
        test_connection_btn.click(
            fn=test_mongo_connection,
            inputs=[mongo_connection, mongo_database],
            outputs=[connection_status]
        )
        
        process_single_btn.click(
            fn=process_single_category,
            inputs=[
                excel_upload, category_dropdown, processor_dropdown,
                mongo_connection, mongo_database
            ], 
            outputs=output_box,
            show_progress=True
        )
        
        process_all_btn.click(
            fn=process_all_categories,
            inputs=[
                excel_upload, processor_dropdown,
                mongo_connection, mongo_database
            ],
            outputs=output_box,
            show_progress=True
        )

    return demo


if __name__ == "__main__":
    demo = create_processing_interface()
    demo.launch(share=False, server_name="localhost", server_port=7860)