Spaces:
Running
Running
Upload 3 files
Browse files- app.py +313 -0
- requirements.txt +10 -0
- util.py +207 -0
app.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import shlex
|
| 3 |
+
# Install the custom component if needed
|
| 4 |
+
subprocess.run(
|
| 5 |
+
shlex.split(
|
| 6 |
+
"pip install ./gradio_magicquillv2-0.0.1-py3-none-any.whl"
|
| 7 |
+
)
|
| 8 |
+
)
|
| 9 |
+
import sys
|
| 10 |
+
import os
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import tempfile
|
| 13 |
+
import numpy as np
|
| 14 |
+
import io
|
| 15 |
+
import base64
|
| 16 |
+
import json
|
| 17 |
+
import uvicorn
|
| 18 |
+
import torch
|
| 19 |
+
from fastapi import FastAPI, Request
|
| 20 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 21 |
+
from gradio_client import Client, handle_file
|
| 22 |
+
from gradio_magicquillv2 import MagicQuillV2
|
| 23 |
+
from PIL import Image
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
from util import (
|
| 27 |
+
read_base64_image as read_base64_image_utils,
|
| 28 |
+
tensor_to_base64,
|
| 29 |
+
get_mask_bbox
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# --- Configuration ---
|
| 33 |
+
# Set this to the URL of your backend Space (running app_backend.py)
|
| 34 |
+
# Example: "https://huggingface.co/spaces/username/backend-space"
|
| 35 |
+
hf_token = hf_token = os.environ.get("HF_TOKEN")
|
| 36 |
+
BACKEND_URL = "LiuZichen/MagicQuillV2"
|
| 37 |
+
SAM_URL = "LiuZichen/MagicQuillHelper"
|
| 38 |
+
|
| 39 |
+
print(f"Connecting to backend at: {BACKEND_URL}")
|
| 40 |
+
|
| 41 |
+
backend_client = Client(BACKEND_URL, token=hf_token)
|
| 42 |
+
|
| 43 |
+
print(f"Connecting to SAM client at: {SAM_URL}")
|
| 44 |
+
sam_client = Client(SAM_URL, token=hf_token)
|
| 45 |
+
|
| 46 |
+
# --- Helper Functions ---
|
| 47 |
+
|
| 48 |
+
def generate_image_handler(x, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg):
|
| 49 |
+
merged_image = x['from_frontend']['img']
|
| 50 |
+
total_mask = x['from_frontend']['total_mask']
|
| 51 |
+
original_image = x['from_frontend']['original_image']
|
| 52 |
+
add_color_image = x['from_frontend']['add_color_image']
|
| 53 |
+
add_edge_mask = x['from_frontend']['add_edge_mask']
|
| 54 |
+
remove_edge_mask = x['from_frontend']['remove_edge_mask']
|
| 55 |
+
fill_mask = x['from_frontend']['fill_mask']
|
| 56 |
+
add_prop_image = x['from_frontend']['add_prop_image']
|
| 57 |
+
positive_prompt = x['from_backend']['prompt']
|
| 58 |
+
|
| 59 |
+
if backend_client is None:
|
| 60 |
+
print("Backend client not initialized")
|
| 61 |
+
x["from_backend"]["generated_image"] = None
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
# Call the backend API
|
| 66 |
+
# The order of arguments must match app_backend.py input list
|
| 67 |
+
res_base64 = backend_client.predict(
|
| 68 |
+
merged_image, # merged_image
|
| 69 |
+
total_mask, # total_mask
|
| 70 |
+
original_image, # original_image
|
| 71 |
+
add_color_image, # add_color_image
|
| 72 |
+
add_edge_mask, # add_edge_mask
|
| 73 |
+
remove_edge_mask, # remove_edge_mask
|
| 74 |
+
fill_mask, # fill_mask
|
| 75 |
+
add_prop_image, # add_prop_image
|
| 76 |
+
positive_prompt, # positive_prompt
|
| 77 |
+
negative_prompt, # negative_prompt
|
| 78 |
+
fine_edge, # fine_edge
|
| 79 |
+
fix_perspective, # fix_perspective
|
| 80 |
+
grow_size, # grow_size
|
| 81 |
+
edge_strength, # edge_strength
|
| 82 |
+
color_strength, # color_strength
|
| 83 |
+
local_strength, # local_strength
|
| 84 |
+
seed, # seed
|
| 85 |
+
steps, # steps
|
| 86 |
+
cfg, # cfg
|
| 87 |
+
api_name="/generate"
|
| 88 |
+
)
|
| 89 |
+
x["from_backend"]["generated_image"] = res_base64
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Error in generation: {e}")
|
| 92 |
+
x["from_backend"]["generated_image"] = None
|
| 93 |
+
|
| 94 |
+
return x
|
| 95 |
+
|
| 96 |
+
# --- Gradio UI ---
|
| 97 |
+
|
| 98 |
+
with gr.Blocks(title="MagicQuill V2") as demo:
|
| 99 |
+
with gr.Row():
|
| 100 |
+
ms = MagicQuillV2()
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column():
|
| 104 |
+
btn = gr.Button("Run", variant="primary")
|
| 105 |
+
with gr.Column():
|
| 106 |
+
with gr.Accordion("parameters", open=False):
|
| 107 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="", interactive=True)
|
| 108 |
+
fine_edge = gr.Radio(label="Fine Edge", choices=['enable', 'disable'], value='disable', interactive=True)
|
| 109 |
+
fix_perspective = gr.Radio(label="Fix Perspective", choices=['enable', 'disable'], value='disable', interactive=True)
|
| 110 |
+
grow_size = gr.Slider(label="Grow Size", minimum=10, maximum=100, value=50, step=1, interactive=True)
|
| 111 |
+
edge_strength = gr.Slider(label="Edge Strength", minimum=0.0, maximum=5.0, value=0.6, step=0.01, interactive=True)
|
| 112 |
+
color_strength = gr.Slider(label="Color Strength", minimum=0.0, maximum=5.0, value=1.5, step=0.01, interactive=True)
|
| 113 |
+
local_strength = gr.Slider(label="Local Strength", minimum=0.0, maximum=5.0, value=1.0, step=0.01, interactive=True)
|
| 114 |
+
seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
|
| 115 |
+
steps = gr.Slider(label="Steps", minimum=0, maximum=50, value=20, interactive=True)
|
| 116 |
+
cfg = gr.Slider(label="CFG", minimum=0.0, maximum=20.0, value=3.5, step=0.1, interactive=True)
|
| 117 |
+
|
| 118 |
+
btn.click(
|
| 119 |
+
generate_image_handler,
|
| 120 |
+
inputs=[ms, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg],
|
| 121 |
+
outputs=ms
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# --- FastAPI App ---
|
| 125 |
+
|
| 126 |
+
app = FastAPI()
|
| 127 |
+
app.add_middleware(
|
| 128 |
+
CORSMiddleware,
|
| 129 |
+
allow_origins=['*'],
|
| 130 |
+
allow_credentials=True,
|
| 131 |
+
allow_methods=["*"],
|
| 132 |
+
allow_headers=["*"],
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Helper to fix root path if running behind proxy (Spaces)
|
| 136 |
+
def get_root_url(request: Request, route_path: str, root_path: str | None):
|
| 137 |
+
return root_path
|
| 138 |
+
|
| 139 |
+
import gradio.route_utils
|
| 140 |
+
gr.route_utils.get_root_url = get_root_url
|
| 141 |
+
|
| 142 |
+
# Mount the Gradio app
|
| 143 |
+
gr.mount_gradio_app(app, demo, path="/demo", root_path="/demo")
|
| 144 |
+
|
| 145 |
+
@app.post("/magic_quill/generate_image")
|
| 146 |
+
async def generate_image(request: Request):
|
| 147 |
+
data = await request.json()
|
| 148 |
+
|
| 149 |
+
if backend_client is None:
|
| 150 |
+
return {'error': 'Backend client not connected'}
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
res = backend_client.predict(
|
| 154 |
+
data["merged_image"],
|
| 155 |
+
data["total_mask"],
|
| 156 |
+
data["original_image"],
|
| 157 |
+
data["add_color_image"],
|
| 158 |
+
data["add_edge_mask"],
|
| 159 |
+
data["remove_edge_mask"],
|
| 160 |
+
data["fill_mask"],
|
| 161 |
+
data["add_prop_image"],
|
| 162 |
+
data["positive_prompt"],
|
| 163 |
+
data["negative_prompt"],
|
| 164 |
+
data["fine_edge"],
|
| 165 |
+
data["fix_perspective"],
|
| 166 |
+
data["grow_size"],
|
| 167 |
+
data["edge_strength"],
|
| 168 |
+
data["color_strength"],
|
| 169 |
+
data["local_strength"],
|
| 170 |
+
data["seed"],
|
| 171 |
+
data["steps"],
|
| 172 |
+
data["cfg"],
|
| 173 |
+
api_name="/generate"
|
| 174 |
+
)
|
| 175 |
+
return {'res': res}
|
| 176 |
+
except Exception as e:
|
| 177 |
+
print(f"Error in backend generation: {e}")
|
| 178 |
+
return {'error': str(e)}
|
| 179 |
+
|
| 180 |
+
@app.post("/magic_quill/process_background_img")
|
| 181 |
+
async def process_background_img(request: Request):
|
| 182 |
+
img = await request.json()
|
| 183 |
+
from util import process_background
|
| 184 |
+
# process_background returns tensor [1, H, W, 3] in uint8 or float
|
| 185 |
+
resized_img_tensor = process_background(img)
|
| 186 |
+
|
| 187 |
+
# tensor_to_base64 from util expects tensor
|
| 188 |
+
resized_img_base64 = "data:image/webp;base64," + tensor_to_base64(
|
| 189 |
+
resized_img_tensor,
|
| 190 |
+
quality=80,
|
| 191 |
+
method=6
|
| 192 |
+
)
|
| 193 |
+
return resized_img_base64
|
| 194 |
+
|
| 195 |
+
@app.post("/magic_quill/segmentation")
|
| 196 |
+
async def segmentation(request: Request):
|
| 197 |
+
json_data = await request.json()
|
| 198 |
+
image_base64 = json_data.get("image", None)
|
| 199 |
+
coordinates_positive = json_data.get("coordinates_positive", None)
|
| 200 |
+
coordinates_negative = json_data.get("coordinates_negative", None)
|
| 201 |
+
bboxes = json_data.get("bboxes", None)
|
| 202 |
+
|
| 203 |
+
if sam_client is None:
|
| 204 |
+
return {"error": "sam client not initialized"}
|
| 205 |
+
|
| 206 |
+
# Process coordinates and bboxes (copied from original app.py)
|
| 207 |
+
pos_coordinates = None
|
| 208 |
+
if coordinates_positive and len(coordinates_positive) > 0:
|
| 209 |
+
pos_coordinates = []
|
| 210 |
+
for coord in coordinates_positive:
|
| 211 |
+
coord['x'] = int(round(coord['x']))
|
| 212 |
+
coord['y'] = int(round(coord['y']))
|
| 213 |
+
pos_coordinates.append({'x': coord['x'], 'y': coord['y']})
|
| 214 |
+
pos_coordinates = json.dumps(pos_coordinates)
|
| 215 |
+
|
| 216 |
+
neg_coordinates = None
|
| 217 |
+
if coordinates_negative and len(coordinates_negative) > 0:
|
| 218 |
+
neg_coordinates = []
|
| 219 |
+
for coord in coordinates_negative:
|
| 220 |
+
coord['x'] = int(round(coord['x']))
|
| 221 |
+
coord['y'] = int(round(coord['y']))
|
| 222 |
+
neg_coordinates.append({'x': coord['x'], 'y': coord['y']})
|
| 223 |
+
neg_coordinates = json.dumps(neg_coordinates)
|
| 224 |
+
|
| 225 |
+
bboxes_xyxy = None
|
| 226 |
+
if bboxes and len(bboxes) > 0:
|
| 227 |
+
valid_bboxes = []
|
| 228 |
+
for bbox in bboxes:
|
| 229 |
+
if (bbox.get("startX") is None or
|
| 230 |
+
bbox.get("startY") is None or
|
| 231 |
+
bbox.get("endX") is None or
|
| 232 |
+
bbox.get("endY") is None):
|
| 233 |
+
continue
|
| 234 |
+
else:
|
| 235 |
+
x_min = max(min(int(bbox["startX"]), int(bbox["endX"])), 0)
|
| 236 |
+
y_min = max(min(int(bbox["startY"]), int(bbox["endY"])), 0)
|
| 237 |
+
x_max = int(bbox["startX"]) if int(bbox["startX"]) > int(bbox["endX"]) else int(bbox["endX"])
|
| 238 |
+
y_max = int(bbox["startY"]) if int(bbox["startY"]) > int(bbox["endY"]) else int(bbox["endY"])
|
| 239 |
+
valid_bboxes.append((x_min, y_min, x_max, y_max))
|
| 240 |
+
|
| 241 |
+
bboxes_xyxy = []
|
| 242 |
+
for bbox in valid_bboxes:
|
| 243 |
+
x_min, y_min, x_max, y_max = bbox
|
| 244 |
+
bboxes_xyxy.append((x_min, y_min, x_max, y_max))
|
| 245 |
+
|
| 246 |
+
if bboxes_xyxy:
|
| 247 |
+
bboxes_xyxy = json.dumps(bboxes_xyxy)
|
| 248 |
+
|
| 249 |
+
print(f"Segmentation request: pos={pos_coordinates}, neg={neg_coordinates}, bboxes={bboxes_xyxy}")
|
| 250 |
+
|
| 251 |
+
try:
|
| 252 |
+
# Save base64 image to temp file
|
| 253 |
+
image_bytes = read_base64_image_utils(image_base64)
|
| 254 |
+
pil_image = Image.open(image_bytes)
|
| 255 |
+
with tempfile.NamedTemporaryFile(suffix=".webp", delete=False) as temp_in:
|
| 256 |
+
pil_image.save(temp_in.name, format="WEBP", quality=80)
|
| 257 |
+
temp_in_path = temp_in.name
|
| 258 |
+
|
| 259 |
+
# Execute segmentation via Client
|
| 260 |
+
result_path = sam_client.predict(
|
| 261 |
+
handle_file(temp_in_path),
|
| 262 |
+
pos_coordinates,
|
| 263 |
+
neg_coordinates,
|
| 264 |
+
bboxes_xyxy,
|
| 265 |
+
api_name="/segment"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
os.unlink(temp_in_path)
|
| 269 |
+
|
| 270 |
+
if isinstance(result_path, (list, tuple)):
|
| 271 |
+
result_path = result_path[0]
|
| 272 |
+
|
| 273 |
+
if not result_path or not os.path.exists(result_path):
|
| 274 |
+
raise RuntimeError("Client returned invalid result path")
|
| 275 |
+
|
| 276 |
+
mask_pil = Image.open(result_path)
|
| 277 |
+
if mask_pil.mode != 'L':
|
| 278 |
+
mask_pil = mask_pil.convert('L')
|
| 279 |
+
|
| 280 |
+
pil_image = pil_image.convert("RGB")
|
| 281 |
+
if pil_image.size != mask_pil.size:
|
| 282 |
+
mask_pil = mask_pil.resize(pil_image.size, Image.NEAREST)
|
| 283 |
+
|
| 284 |
+
r, g, b = pil_image.split()
|
| 285 |
+
res_pil = Image.merge("RGBA", (r, g, b, mask_pil))
|
| 286 |
+
|
| 287 |
+
mask_tensor = torch.from_numpy(np.array(mask_pil) / 255.0).float().unsqueeze(0)
|
| 288 |
+
mask_bbox = get_mask_bbox(mask_tensor)
|
| 289 |
+
if mask_bbox:
|
| 290 |
+
x_min, y_min, x_max, y_max = mask_bbox
|
| 291 |
+
seg_bbox = {'startX': x_min, 'startY': y_min, 'endX': x_max, 'endY': y_max}
|
| 292 |
+
else:
|
| 293 |
+
seg_bbox = {'startX': 0, 'startY': 0, 'endX': 0, 'endY': 0}
|
| 294 |
+
|
| 295 |
+
print(seg_bbox)
|
| 296 |
+
|
| 297 |
+
buffered = io.BytesIO()
|
| 298 |
+
res_pil.save(buffered, format="PNG")
|
| 299 |
+
image_base64_res = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 300 |
+
|
| 301 |
+
return {
|
| 302 |
+
"error": False,
|
| 303 |
+
"segmentation_image": "data:image/png;base64," + image_base64_res,
|
| 304 |
+
"segmentation_bbox": seg_bbox
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
except Exception as e:
|
| 308 |
+
print(f"Error in segmentation: {e}")
|
| 309 |
+
return {"error": str(e)}
|
| 310 |
+
|
| 311 |
+
if __name__ == "__main__":
|
| 312 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 313 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
gradio==5.4.0
|
| 4 |
+
gradio_client
|
| 5 |
+
numpy
|
| 6 |
+
opencv-python
|
| 7 |
+
pillow
|
| 8 |
+
requests
|
| 9 |
+
torch
|
| 10 |
+
torchvision
|
util.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from collections import Counter
|
| 3 |
+
import numpy as np
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
import cv2 # OpenCV
|
| 6 |
+
import torch
|
| 7 |
+
import re
|
| 8 |
+
import io
|
| 9 |
+
import base64
|
| 10 |
+
from PIL import Image, ImageOps
|
| 11 |
+
|
| 12 |
+
PREFERRED_KONTEXT_RESOLUTIONS = [
|
| 13 |
+
(672, 1568),
|
| 14 |
+
(688, 1504),
|
| 15 |
+
(720, 1456),
|
| 16 |
+
(752, 1392),
|
| 17 |
+
(800, 1328),
|
| 18 |
+
(832, 1248),
|
| 19 |
+
(880, 1184),
|
| 20 |
+
(944, 1104),
|
| 21 |
+
(1024, 1024),
|
| 22 |
+
(1104, 944),
|
| 23 |
+
(1184, 880),
|
| 24 |
+
(1248, 832),
|
| 25 |
+
(1328, 800),
|
| 26 |
+
(1392, 752),
|
| 27 |
+
(1456, 720),
|
| 28 |
+
(1504, 688),
|
| 29 |
+
(1568, 672),
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
def get_bounding_box_from_mask(mask, padded=False):
|
| 33 |
+
mask = mask.squeeze()
|
| 34 |
+
rows, cols = torch.where(mask > 0.5)
|
| 35 |
+
if len(rows) == 0 or len(cols) == 0:
|
| 36 |
+
return (0, 0, 0, 0)
|
| 37 |
+
height, width = mask.shape
|
| 38 |
+
if padded:
|
| 39 |
+
padded_size = max(width, height)
|
| 40 |
+
if width < height:
|
| 41 |
+
offset_x = (padded_size - width) / 2
|
| 42 |
+
offset_y = 0
|
| 43 |
+
else:
|
| 44 |
+
offset_y = (padded_size - height) / 2
|
| 45 |
+
offset_x = 0
|
| 46 |
+
top_left_x = round(float((torch.min(cols).item() + offset_x) / padded_size), 3)
|
| 47 |
+
bottom_right_x = round(float((torch.max(cols).item() + offset_x) / padded_size), 3)
|
| 48 |
+
top_left_y = round(float((torch.min(rows).item() + offset_y) / padded_size), 3)
|
| 49 |
+
bottom_right_y = round(float((torch.max(rows).item() + offset_y) / padded_size), 3)
|
| 50 |
+
else:
|
| 51 |
+
offset_x = 0
|
| 52 |
+
offset_y = 0
|
| 53 |
+
|
| 54 |
+
top_left_x = round(float(torch.min(cols).item() / width), 3)
|
| 55 |
+
bottom_right_x = round(float(torch.max(cols).item() / width), 3)
|
| 56 |
+
top_left_y = round(float(torch.min(rows).item() / height), 3)
|
| 57 |
+
bottom_right_y = round(float(torch.max(rows).item() / height), 3)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
return (top_left_x, top_left_y, bottom_right_x, bottom_right_y)
|
| 61 |
+
|
| 62 |
+
def extract_bbox(text):
|
| 63 |
+
pattern = r"\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]"
|
| 64 |
+
match = re.search(pattern, text)
|
| 65 |
+
return (int(match.group(1)), int(match.group(2)), int(match.group(3)), int(match.group(4)))
|
| 66 |
+
|
| 67 |
+
def resize_bbox(bbox, width_ratio, height_ratio):
|
| 68 |
+
x1, y1, x2, y2 = bbox
|
| 69 |
+
new_x1 = int(x1 * width_ratio)
|
| 70 |
+
new_y1 = int(y1 * height_ratio)
|
| 71 |
+
new_x2 = int(x2 * width_ratio)
|
| 72 |
+
new_y2 = int(y2 * height_ratio)
|
| 73 |
+
|
| 74 |
+
return (new_x1, new_y1, new_x2, new_y2)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def tensor_to_base64(tensor, quality=80, method=6):
|
| 78 |
+
tensor = tensor.squeeze(0).clone().detach().cpu()
|
| 79 |
+
|
| 80 |
+
if tensor.dtype == torch.float32 or tensor.dtype == torch.float64 or tensor.dtype == torch.float16:
|
| 81 |
+
tensor *= 255
|
| 82 |
+
tensor = tensor.to(torch.uint8)
|
| 83 |
+
|
| 84 |
+
if tensor.ndim == 2: # 灰度图像
|
| 85 |
+
pil_image = Image.fromarray(tensor.numpy(), 'L')
|
| 86 |
+
pil_image = pil_image.convert('RGB')
|
| 87 |
+
elif tensor.ndim == 3:
|
| 88 |
+
if tensor.shape[2] == 1: # 单通道
|
| 89 |
+
pil_image = Image.fromarray(tensor.numpy().squeeze(2), 'L')
|
| 90 |
+
pil_image = pil_image.convert('RGB')
|
| 91 |
+
elif tensor.shape[2] == 3: # RGB
|
| 92 |
+
pil_image = Image.fromarray(tensor.numpy(), 'RGB')
|
| 93 |
+
elif tensor.shape[2] == 4: # RGBA
|
| 94 |
+
pil_image = Image.fromarray(tensor.numpy(), 'RGBA')
|
| 95 |
+
else:
|
| 96 |
+
raise ValueError(f"Unsupported number of channels: {tensor.shape[2]}")
|
| 97 |
+
else:
|
| 98 |
+
raise ValueError(f"Unsupported tensor dimensions: {tensor.ndim}")
|
| 99 |
+
|
| 100 |
+
buffered = io.BytesIO()
|
| 101 |
+
pil_image.save(buffered, format="WEBP", quality=quality, method=method, lossless=False)
|
| 102 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 103 |
+
return img_str
|
| 104 |
+
|
| 105 |
+
def load_and_preprocess_image(image_path, convert_to='RGB', has_alpha=False):
|
| 106 |
+
image = Image.open(image_path)
|
| 107 |
+
image = ImageOps.exif_transpose(image)
|
| 108 |
+
|
| 109 |
+
if image.mode == 'RGBA':
|
| 110 |
+
background = Image.new('RGBA', image.size, (255, 255, 255, 255))
|
| 111 |
+
image = Image.alpha_composite(background, image)
|
| 112 |
+
image = image.convert(convert_to)
|
| 113 |
+
image_array = np.array(image).astype(np.float32) / 255.0
|
| 114 |
+
|
| 115 |
+
if has_alpha and convert_to == 'RGBA':
|
| 116 |
+
image_tensor = torch.from_numpy(image_array)[None,]
|
| 117 |
+
else:
|
| 118 |
+
if len(image_array.shape) == 3 and image_array.shape[2] > 3:
|
| 119 |
+
image_array = image_array[:, :, :3]
|
| 120 |
+
image_tensor = torch.from_numpy(image_array)[None,]
|
| 121 |
+
|
| 122 |
+
return image_tensor
|
| 123 |
+
|
| 124 |
+
def process_background(base64_image, convert_to='RGB', size=None):
|
| 125 |
+
image_data = read_base64_image(base64_image)
|
| 126 |
+
image = Image.open(image_data)
|
| 127 |
+
image = ImageOps.exif_transpose(image)
|
| 128 |
+
image = image.convert(convert_to)
|
| 129 |
+
|
| 130 |
+
# Select preferred size by closest aspect ratio, then snap to multiple_of
|
| 131 |
+
w0, h0 = image.size
|
| 132 |
+
aspect_ratio = (w0 / h0) if h0 != 0 else 1.0
|
| 133 |
+
# Choose the (w, h) whose aspect ratio is closest to the input
|
| 134 |
+
_, tw, th = min((abs(aspect_ratio - w / h), w, h) for (w, h) in PREFERRED_KONTEXT_RESOLUTIONS)
|
| 135 |
+
multiple_of = 16 # default: vae_scale_factor (8) * 2
|
| 136 |
+
tw = (tw // multiple_of) * multiple_of
|
| 137 |
+
th = (th // multiple_of) * multiple_of
|
| 138 |
+
|
| 139 |
+
if (w0, h0) != (tw, th):
|
| 140 |
+
image = image.resize((tw, th), resample=Image.BICUBIC)
|
| 141 |
+
|
| 142 |
+
image_array = np.array(image).astype(np.uint8)
|
| 143 |
+
image_tensor = torch.from_numpy(image_array)[None,]
|
| 144 |
+
return image_tensor
|
| 145 |
+
|
| 146 |
+
def read_base64_image(base64_image):
|
| 147 |
+
if base64_image.startswith("data:image/png;base64,"):
|
| 148 |
+
base64_image = base64_image.split(",")[1]
|
| 149 |
+
elif base64_image.startswith("data:image/jpeg;base64,"):
|
| 150 |
+
base64_image = base64_image.split(",")[1]
|
| 151 |
+
elif base64_image.startswith("data:image/webp;base64,"):
|
| 152 |
+
base64_image = base64_image.split(",")[1]
|
| 153 |
+
else:
|
| 154 |
+
raise ValueError("Unsupported image format.")
|
| 155 |
+
image_data = base64.b64decode(base64_image)
|
| 156 |
+
return io.BytesIO(image_data)
|
| 157 |
+
|
| 158 |
+
def create_alpha_mask(image_path):
|
| 159 |
+
"""Create an alpha mask from the alpha channel of an image."""
|
| 160 |
+
image = Image.open(image_path)
|
| 161 |
+
image = ImageOps.exif_transpose(image)
|
| 162 |
+
mask = torch.zeros((1, image.height, image.width), dtype=torch.float32)
|
| 163 |
+
if 'A' in image.getbands():
|
| 164 |
+
alpha_channel = np.array(image.getchannel('A')).astype(np.float32) / 255.0
|
| 165 |
+
mask[0] = 1.0 - torch.from_numpy(alpha_channel)
|
| 166 |
+
return mask
|
| 167 |
+
|
| 168 |
+
def get_mask_bbox(mask_tensor, padding=10):
|
| 169 |
+
assert len(mask_tensor.shape) == 3 and mask_tensor.shape[0] == 1
|
| 170 |
+
_, H, W = mask_tensor.shape
|
| 171 |
+
mask_2d = mask_tensor.squeeze(0)
|
| 172 |
+
|
| 173 |
+
y_coords, x_coords = torch.where(mask_2d > 0)
|
| 174 |
+
|
| 175 |
+
if len(y_coords) == 0:
|
| 176 |
+
return None
|
| 177 |
+
|
| 178 |
+
x_min = int(torch.min(x_coords))
|
| 179 |
+
y_min = int(torch.min(y_coords))
|
| 180 |
+
x_max = int(torch.max(x_coords))
|
| 181 |
+
y_max = int(torch.max(y_coords))
|
| 182 |
+
|
| 183 |
+
x_min = max(0, x_min - padding)
|
| 184 |
+
y_min = max(0, y_min - padding)
|
| 185 |
+
x_max = min(W - 1, x_max + padding)
|
| 186 |
+
y_max = min(H - 1, y_max + padding)
|
| 187 |
+
|
| 188 |
+
return x_min, y_min, x_max, y_max
|
| 189 |
+
|
| 190 |
+
def tensor_to_pil(tensor):
|
| 191 |
+
tensor = tensor.squeeze(0).clone().detach().cpu()
|
| 192 |
+
if tensor.dtype in [torch.float32, torch.float64, torch.float16]:
|
| 193 |
+
if tensor.max() <= 1.0:
|
| 194 |
+
tensor *= 255
|
| 195 |
+
tensor = tensor.to(torch.uint8)
|
| 196 |
+
|
| 197 |
+
if tensor.ndim == 2: # 灰度图像 [H, W]
|
| 198 |
+
return Image.fromarray(tensor.numpy(), 'L')
|
| 199 |
+
elif tensor.ndim == 3:
|
| 200 |
+
if tensor.shape[2] == 1: # 单通道 [H, W, 1]
|
| 201 |
+
return Image.fromarray(tensor.numpy().squeeze(2), 'L')
|
| 202 |
+
elif tensor.shape[2] >= 3: # RGB [H, W, 3]
|
| 203 |
+
return Image.fromarray(tensor.numpy(), 'RGB')
|
| 204 |
+
else:
|
| 205 |
+
raise ValueError(f"不支持的通道数: {tensor.shape[2]}")
|
| 206 |
+
else:
|
| 207 |
+
raise ValueError(f"不支持的tensor维度: {tensor.ndim}")
|