Spaces:
Sleeping
Sleeping
msmhmorsi
commited on
Commit
·
68f98f8
1
Parent(s):
756da27
change to v1
Browse files- .env +1 -0
- __pycache__/image_enhance.cpython-310.pyc +0 -0
- __pycache__/image_route.cpython-310.pyc +0 -0
- __pycache__/pdf_route.cpython-310.pyc +0 -0
- __pycache__/pdf_to_md.cpython-310.pyc +0 -0
- app.py +8 -136
- image_route.py +138 -0
- pdf_route.py +425 -0
- requirements.txt +3 -0
.env
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
AZURE_FORM_RECOGNIZER_KEY=8PyYQxSy5oOghAYincAL95bIdJ6ppPaZHiOydPgyW8V66mOPJEz7JQQJ99ALAC3pKaRXJ3w3AAALACOGVy59
|
__pycache__/image_enhance.cpython-310.pyc
ADDED
|
Binary file (3.79 kB). View file
|
|
|
__pycache__/image_route.cpython-310.pyc
ADDED
|
Binary file (3.79 kB). View file
|
|
|
__pycache__/pdf_route.cpython-310.pyc
ADDED
|
Binary file (11.5 kB). View file
|
|
|
__pycache__/pdf_to_md.cpython-310.pyc
ADDED
|
Binary file (5.6 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,13 +1,9 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import fitz
|
| 3 |
-
import numpy as np
|
| 4 |
-
from io import BytesIO
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
from skimage.color import rgb2gray
|
| 7 |
-
from skimage.measure import label, regionprops
|
| 8 |
-
from fastapi.responses import StreamingResponse
|
| 9 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
app = FastAPI(
|
| 13 |
title="PDF Processing API",
|
|
@@ -24,133 +20,9 @@ app.add_middleware(
|
|
| 24 |
allow_headers=["*"], # Allows all headers
|
| 25 |
)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
Convert the first page of a PDF to a PNG and apply image enhancement.
|
| 31 |
-
Args:
|
| 32 |
-
pdf_content: The PDF file content as bytes.
|
| 33 |
-
area_threshold: Threshold for area filtering (default: 100).
|
| 34 |
-
Returns:
|
| 35 |
-
BytesIO: Enhanced PNG image content.
|
| 36 |
-
"""
|
| 37 |
-
# Open the PDF from bytes
|
| 38 |
-
doc = fitz.open(stream=pdf_content, filetype="pdf")
|
| 39 |
-
|
| 40 |
-
# Load the first page
|
| 41 |
-
page = doc.load_page(0)
|
| 42 |
-
|
| 43 |
-
# Render the page as an image
|
| 44 |
-
pix = page.get_pixmap(dpi=300)
|
| 45 |
-
png_image = pix.tobytes("png")
|
| 46 |
-
|
| 47 |
-
# Load the image with OpenCV
|
| 48 |
-
np_array = np.frombuffer(png_image, dtype=np.uint8)
|
| 49 |
-
img = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
|
| 50 |
-
|
| 51 |
-
# Convert to grayscale
|
| 52 |
-
img_gray = rgb2gray(img)
|
| 53 |
-
|
| 54 |
-
# Convert grayscale to binary using Otsu's threshold
|
| 55 |
-
_, img_binary = cv2.threshold((img_gray * 255).astype(np.uint8), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 56 |
-
|
| 57 |
-
# Invert the binary image
|
| 58 |
-
img_binary = ~img_binary
|
| 59 |
-
|
| 60 |
-
# Label connected components
|
| 61 |
-
label_img = label(img_binary)
|
| 62 |
-
regions = regionprops(label_img)
|
| 63 |
-
|
| 64 |
-
# Filter by area threshold
|
| 65 |
-
valid_labels = [region.label for region in regions if region.area >= area_threshold]
|
| 66 |
-
img_filtered = np.isin(label_img, valid_labels)
|
| 67 |
-
|
| 68 |
-
# Save enhanced image to memory
|
| 69 |
-
output_buffer = BytesIO()
|
| 70 |
-
plt.imsave(output_buffer, ~img_filtered, cmap="gray", format="png")
|
| 71 |
-
output_buffer.seek(0)
|
| 72 |
-
return output_buffer
|
| 73 |
-
|
| 74 |
-
@app.post("/process-pdf/")
|
| 75 |
-
async def process_pdf(
|
| 76 |
-
file: UploadFile = File(...),
|
| 77 |
-
area_threshold: int = 100
|
| 78 |
-
):
|
| 79 |
-
"""
|
| 80 |
-
Process a PDF file and return an enhanced PNG image.
|
| 81 |
-
Args:
|
| 82 |
-
file: The PDF file to process
|
| 83 |
-
area_threshold: Threshold for area filtering (default: 100)
|
| 84 |
-
Returns:
|
| 85 |
-
StreamingResponse: Enhanced PNG image
|
| 86 |
-
"""
|
| 87 |
-
try:
|
| 88 |
-
# Read PDF file content
|
| 89 |
-
pdf_content = await file.read()
|
| 90 |
-
|
| 91 |
-
# Process the PDF and get the enhanced image
|
| 92 |
-
enhanced_image = convert_and_process_pdf(pdf_content, area_threshold)
|
| 93 |
-
|
| 94 |
-
# Return the processed image as a StreamingResponse
|
| 95 |
-
return StreamingResponse(
|
| 96 |
-
enhanced_image,
|
| 97 |
-
media_type="image/png",
|
| 98 |
-
headers={"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_enhanced.png"}
|
| 99 |
-
)
|
| 100 |
-
except Exception as e:
|
| 101 |
-
raise HTTPException(status_code=500, detail=f"Error processing PDF: {str(e)}")
|
| 102 |
-
|
| 103 |
-
@app.post("/process-image/")
|
| 104 |
-
async def process_image(
|
| 105 |
-
file: UploadFile = File(...),
|
| 106 |
-
area_threshold: int = 100
|
| 107 |
-
):
|
| 108 |
-
"""
|
| 109 |
-
Process an image file and return an enhanced image.
|
| 110 |
-
Args:
|
| 111 |
-
file: The image file to process
|
| 112 |
-
area_threshold: Threshold for area filtering (default: 100)
|
| 113 |
-
Returns:
|
| 114 |
-
StreamingResponse: Enhanced image
|
| 115 |
-
"""
|
| 116 |
-
try:
|
| 117 |
-
# Read image file content
|
| 118 |
-
image_content = await file.read()
|
| 119 |
-
|
| 120 |
-
# Convert to numpy array
|
| 121 |
-
np_array = np.frombuffer(image_content, dtype=np.uint8)
|
| 122 |
-
img = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
|
| 123 |
-
|
| 124 |
-
# Convert to grayscale
|
| 125 |
-
img_gray = rgb2gray(img)
|
| 126 |
-
|
| 127 |
-
# Convert grayscale to binary using Otsu's threshold
|
| 128 |
-
_, img_binary = cv2.threshold((img_gray * 255).astype(np.uint8), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 129 |
-
|
| 130 |
-
# Invert the binary image
|
| 131 |
-
img_binary = ~img_binary
|
| 132 |
-
|
| 133 |
-
# Label connected components
|
| 134 |
-
label_img = label(img_binary)
|
| 135 |
-
regions = regionprops(label_img)
|
| 136 |
-
|
| 137 |
-
# Filter by area threshold
|
| 138 |
-
valid_labels = [region.label for region in regions if region.area >= area_threshold]
|
| 139 |
-
img_filtered = np.isin(label_img, valid_labels)
|
| 140 |
-
|
| 141 |
-
# Save enhanced image to memory
|
| 142 |
-
output_buffer = BytesIO()
|
| 143 |
-
plt.imsave(output_buffer, ~img_filtered, cmap="gray", format="png")
|
| 144 |
-
output_buffer.seek(0)
|
| 145 |
-
|
| 146 |
-
# Return the processed image as a StreamingResponse
|
| 147 |
-
return StreamingResponse(
|
| 148 |
-
output_buffer,
|
| 149 |
-
media_type="image/png",
|
| 150 |
-
headers={"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_enhanced.png"}
|
| 151 |
-
)
|
| 152 |
-
except Exception as e:
|
| 153 |
-
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
| 154 |
|
| 155 |
if __name__ == "__main__":
|
| 156 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
|
| 4 |
+
# Import routers
|
| 5 |
+
from image_route import router as image_enhance_router
|
| 6 |
+
from pdf_route import router as pdf_to_md_router
|
| 7 |
|
| 8 |
app = FastAPI(
|
| 9 |
title="PDF Processing API",
|
|
|
|
| 20 |
allow_headers=["*"], # Allows all headers
|
| 21 |
)
|
| 22 |
|
| 23 |
+
# Include routers
|
| 24 |
+
app.include_router(image_enhance_router, prefix="/image", tags=["image"])
|
| 25 |
+
app.include_router(pdf_to_md_router, prefix="/pdf", tags=["pdf"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
if __name__ == "__main__":
|
| 28 |
import uvicorn
|
image_route.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import fitz
|
| 3 |
+
import numpy as np
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from skimage.color import rgb2gray
|
| 7 |
+
from skimage.measure import label, regionprops
|
| 8 |
+
from fastapi import APIRouter, UploadFile, File, HTTPException
|
| 9 |
+
from fastapi.responses import StreamingResponse
|
| 10 |
+
|
| 11 |
+
router = APIRouter()
|
| 12 |
+
|
| 13 |
+
def convert_and_process_pdf(pdf_content: bytes, area_threshold: int = 100) -> BytesIO:
|
| 14 |
+
"""
|
| 15 |
+
Convert the first page of a PDF to a PNG and apply image enhancement.
|
| 16 |
+
Args:
|
| 17 |
+
pdf_content: The PDF file content as bytes.
|
| 18 |
+
area_threshold: Threshold for area filtering (default: 100).
|
| 19 |
+
Returns:
|
| 20 |
+
BytesIO: Enhanced PNG image content.
|
| 21 |
+
"""
|
| 22 |
+
# Open the PDF from bytes
|
| 23 |
+
doc = fitz.open(stream=pdf_content, filetype="pdf")
|
| 24 |
+
|
| 25 |
+
# Load the first page
|
| 26 |
+
page = doc.load_page(0)
|
| 27 |
+
|
| 28 |
+
# Render the page as an image
|
| 29 |
+
pix = page.get_pixmap(dpi=300)
|
| 30 |
+
png_image = pix.tobytes("png")
|
| 31 |
+
|
| 32 |
+
# Load the image with OpenCV
|
| 33 |
+
np_array = np.frombuffer(png_image, dtype=np.uint8)
|
| 34 |
+
img = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
|
| 35 |
+
|
| 36 |
+
# Convert to grayscale
|
| 37 |
+
img_gray = rgb2gray(img)
|
| 38 |
+
|
| 39 |
+
# Convert grayscale to binary using Otsu's threshold
|
| 40 |
+
_, img_binary = cv2.threshold((img_gray * 255).astype(np.uint8), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 41 |
+
|
| 42 |
+
# Invert the binary image
|
| 43 |
+
img_binary = ~img_binary
|
| 44 |
+
|
| 45 |
+
# Label connected components
|
| 46 |
+
label_img = label(img_binary)
|
| 47 |
+
regions = regionprops(label_img)
|
| 48 |
+
|
| 49 |
+
# Filter by area threshold
|
| 50 |
+
valid_labels = [region.label for region in regions if region.area >= area_threshold]
|
| 51 |
+
img_filtered = np.isin(label_img, valid_labels)
|
| 52 |
+
|
| 53 |
+
# Save enhanced image to memory
|
| 54 |
+
output_buffer = BytesIO()
|
| 55 |
+
plt.imsave(output_buffer, ~img_filtered, cmap="gray", format="png")
|
| 56 |
+
output_buffer.seek(0)
|
| 57 |
+
return output_buffer
|
| 58 |
+
|
| 59 |
+
@router.post("/process-pdf/")
|
| 60 |
+
async def process_pdf(
|
| 61 |
+
file: UploadFile = File(...),
|
| 62 |
+
area_threshold: int = 100
|
| 63 |
+
):
|
| 64 |
+
"""
|
| 65 |
+
Process a PDF file and return an enhanced PNG image.
|
| 66 |
+
Args:
|
| 67 |
+
file: The PDF file to process
|
| 68 |
+
area_threshold: Threshold for area filtering (default: 100)
|
| 69 |
+
Returns:
|
| 70 |
+
StreamingResponse: Enhanced PNG image
|
| 71 |
+
"""
|
| 72 |
+
try:
|
| 73 |
+
# Read PDF file content
|
| 74 |
+
pdf_content = await file.read()
|
| 75 |
+
|
| 76 |
+
# Process the PDF and get the enhanced image
|
| 77 |
+
enhanced_image = convert_and_process_pdf(pdf_content, area_threshold)
|
| 78 |
+
|
| 79 |
+
# Return the processed image as a StreamingResponse
|
| 80 |
+
return StreamingResponse(
|
| 81 |
+
enhanced_image,
|
| 82 |
+
media_type="image/png",
|
| 83 |
+
headers={"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_enhanced.png"}
|
| 84 |
+
)
|
| 85 |
+
except Exception as e:
|
| 86 |
+
raise HTTPException(status_code=500, detail=f"Error processing PDF: {str(e)}")
|
| 87 |
+
|
| 88 |
+
@router.post("/process-image/")
|
| 89 |
+
async def process_image(
|
| 90 |
+
file: UploadFile = File(...),
|
| 91 |
+
area_threshold: int = 100
|
| 92 |
+
):
|
| 93 |
+
"""
|
| 94 |
+
Process an image file and return an enhanced image.
|
| 95 |
+
Args:
|
| 96 |
+
file: The image file to process
|
| 97 |
+
area_threshold: Threshold for area filtering (default: 100)
|
| 98 |
+
Returns:
|
| 99 |
+
StreamingResponse: Enhanced image
|
| 100 |
+
"""
|
| 101 |
+
try:
|
| 102 |
+
# Read image file content
|
| 103 |
+
image_content = await file.read()
|
| 104 |
+
|
| 105 |
+
# Convert to numpy array
|
| 106 |
+
np_array = np.frombuffer(image_content, dtype=np.uint8)
|
| 107 |
+
img = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
|
| 108 |
+
|
| 109 |
+
# Convert to grayscale
|
| 110 |
+
img_gray = rgb2gray(img)
|
| 111 |
+
|
| 112 |
+
# Convert grayscale to binary using Otsu's threshold
|
| 113 |
+
_, img_binary = cv2.threshold((img_gray * 255).astype(np.uint8), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 114 |
+
|
| 115 |
+
# Invert the binary image
|
| 116 |
+
img_binary = ~img_binary
|
| 117 |
+
|
| 118 |
+
# Label connected components
|
| 119 |
+
label_img = label(img_binary)
|
| 120 |
+
regions = regionprops(label_img)
|
| 121 |
+
|
| 122 |
+
# Filter by area threshold
|
| 123 |
+
valid_labels = [region.label for region in regions if region.area >= area_threshold]
|
| 124 |
+
img_filtered = np.isin(label_img, valid_labels)
|
| 125 |
+
|
| 126 |
+
# Save enhanced image to memory
|
| 127 |
+
output_buffer = BytesIO()
|
| 128 |
+
plt.imsave(output_buffer, ~img_filtered, cmap="gray", format="png")
|
| 129 |
+
output_buffer.seek(0)
|
| 130 |
+
|
| 131 |
+
# Return the processed image as a StreamingResponse
|
| 132 |
+
return StreamingResponse(
|
| 133 |
+
output_buffer,
|
| 134 |
+
media_type="image/png",
|
| 135 |
+
headers={"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_enhanced.png"}
|
| 136 |
+
)
|
| 137 |
+
except Exception as e:
|
| 138 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
pdf_route.py
ADDED
|
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from fastapi import APIRouter, UploadFile, File, HTTPException
|
| 5 |
+
from fastapi.responses import StreamingResponse, JSONResponse
|
| 6 |
+
from azure.core.credentials import AzureKeyCredential
|
| 7 |
+
from azure.ai.formrecognizer import DocumentAnalysisClient
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
from docx import Document
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
# Load environment variables
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
router = APIRouter()
|
| 16 |
+
|
| 17 |
+
@router.post("/convert-to-markdown")
|
| 18 |
+
async def convert_to_markdown(file: UploadFile = File(...)):
|
| 19 |
+
"""
|
| 20 |
+
Convert a PDF file to markdown format.
|
| 21 |
+
Args:
|
| 22 |
+
file: The PDF file to convert
|
| 23 |
+
Returns:
|
| 24 |
+
StreamingResponse: Markdown file
|
| 25 |
+
"""
|
| 26 |
+
try:
|
| 27 |
+
# Read the uploaded file content
|
| 28 |
+
content = await file.read()
|
| 29 |
+
|
| 30 |
+
# Save the content to a temporary file
|
| 31 |
+
temp_pdf_path = "temp.pdf"
|
| 32 |
+
with open(temp_pdf_path, "wb") as f:
|
| 33 |
+
f.write(content)
|
| 34 |
+
|
| 35 |
+
# Analyze the document
|
| 36 |
+
result = analyze_document(temp_pdf_path)
|
| 37 |
+
|
| 38 |
+
# Create markdown file
|
| 39 |
+
temp_md_path = "temp.md"
|
| 40 |
+
create_markdown_file(result, temp_md_path)
|
| 41 |
+
|
| 42 |
+
# Read the markdown file
|
| 43 |
+
with open(temp_md_path, "rb") as f:
|
| 44 |
+
markdown_content = f.read()
|
| 45 |
+
|
| 46 |
+
# Clean up temporary files
|
| 47 |
+
os.remove(temp_pdf_path)
|
| 48 |
+
os.remove(temp_md_path)
|
| 49 |
+
|
| 50 |
+
# Return the markdown file as a download
|
| 51 |
+
return StreamingResponse(
|
| 52 |
+
BytesIO(markdown_content),
|
| 53 |
+
media_type="text/markdown",
|
| 54 |
+
headers={
|
| 55 |
+
"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}.md"
|
| 56 |
+
}
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
except Exception as e:
|
| 60 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 61 |
+
|
| 62 |
+
@router.post("/convert-to-excel")
|
| 63 |
+
async def convert_to_excel(file: UploadFile = File(...)):
|
| 64 |
+
"""
|
| 65 |
+
Convert tables from markdown to Excel format.
|
| 66 |
+
Args:
|
| 67 |
+
file: The markdown file to convert
|
| 68 |
+
Returns:
|
| 69 |
+
StreamingResponse: Excel file containing all tables
|
| 70 |
+
"""
|
| 71 |
+
try:
|
| 72 |
+
# Read the markdown content
|
| 73 |
+
content = await file.read()
|
| 74 |
+
markdown_text = content.decode('utf-8')
|
| 75 |
+
|
| 76 |
+
# Extract tables from markdown
|
| 77 |
+
tables = extract_tables_from_markdown(markdown_text)
|
| 78 |
+
|
| 79 |
+
if not tables:
|
| 80 |
+
raise HTTPException(status_code=400, detail="No tables found in the markdown content")
|
| 81 |
+
|
| 82 |
+
# Create Excel file
|
| 83 |
+
excel_buffer = create_excel_from_markdown_tables(tables)
|
| 84 |
+
|
| 85 |
+
# Return the Excel file as a download
|
| 86 |
+
return StreamingResponse(
|
| 87 |
+
excel_buffer,
|
| 88 |
+
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 89 |
+
headers={
|
| 90 |
+
"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_tables.xlsx"
|
| 91 |
+
}
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
except Exception as e:
|
| 95 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 96 |
+
|
| 97 |
+
@router.post("/convert-to-word")
|
| 98 |
+
async def convert_to_word(file: UploadFile = File(...)):
|
| 99 |
+
"""
|
| 100 |
+
Convert markdown to Word document format.
|
| 101 |
+
Args:
|
| 102 |
+
file: The markdown file to convert
|
| 103 |
+
Returns:
|
| 104 |
+
StreamingResponse: Word document file
|
| 105 |
+
"""
|
| 106 |
+
try:
|
| 107 |
+
# Read the markdown content
|
| 108 |
+
content = await file.read()
|
| 109 |
+
markdown_text = content.decode('utf-8')
|
| 110 |
+
|
| 111 |
+
# Create Word file
|
| 112 |
+
temp_docx_path = "temp.docx"
|
| 113 |
+
create_word_from_markdown(markdown_text, temp_docx_path)
|
| 114 |
+
|
| 115 |
+
# Read the Word file
|
| 116 |
+
with open(temp_docx_path, "rb") as f:
|
| 117 |
+
word_content = f.read()
|
| 118 |
+
|
| 119 |
+
# Clean up temporary file
|
| 120 |
+
os.remove(temp_docx_path)
|
| 121 |
+
|
| 122 |
+
# Return the Word file as a download
|
| 123 |
+
return StreamingResponse(
|
| 124 |
+
BytesIO(word_content),
|
| 125 |
+
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
| 126 |
+
headers={
|
| 127 |
+
"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}.docx"
|
| 128 |
+
}
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 133 |
+
|
| 134 |
+
def analyze_document(file_path):
|
| 135 |
+
"""Analyze document using Azure Form Recognizer"""
|
| 136 |
+
endpoint = "https://aal-ocr-ai-azureapi.cognitiveservices.azure.com/"
|
| 137 |
+
key = os.getenv("AZURE_FORM_RECOGNIZER_KEY")
|
| 138 |
+
|
| 139 |
+
document_analysis_client = DocumentAnalysisClient(
|
| 140 |
+
endpoint=endpoint, credential=AzureKeyCredential(key)
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
with open(file_path, "rb") as f:
|
| 144 |
+
poller = document_analysis_client.begin_analyze_document(
|
| 145 |
+
"prebuilt-layout", document=f
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
result = poller.result()
|
| 149 |
+
return result
|
| 150 |
+
|
| 151 |
+
def extract_tables_from_markdown(markdown_text):
|
| 152 |
+
"""Extract tables from markdown text"""
|
| 153 |
+
tables = []
|
| 154 |
+
current_table = []
|
| 155 |
+
|
| 156 |
+
lines = markdown_text.split('\n')
|
| 157 |
+
in_table = False
|
| 158 |
+
|
| 159 |
+
for line in lines:
|
| 160 |
+
if '|' in line:
|
| 161 |
+
# Skip separator lines (e.g., |---|---|)
|
| 162 |
+
if re.match(r'^[\s|:-]+$', line):
|
| 163 |
+
continue
|
| 164 |
+
|
| 165 |
+
# Process table row
|
| 166 |
+
cells = [cell.strip() for cell in line.split('|')[1:-1]]
|
| 167 |
+
if cells:
|
| 168 |
+
if not in_table:
|
| 169 |
+
in_table = True
|
| 170 |
+
current_table.append(cells)
|
| 171 |
+
else:
|
| 172 |
+
if in_table:
|
| 173 |
+
if current_table:
|
| 174 |
+
tables.append(current_table)
|
| 175 |
+
current_table = []
|
| 176 |
+
in_table = False
|
| 177 |
+
|
| 178 |
+
# Add the last table if exists
|
| 179 |
+
if current_table:
|
| 180 |
+
tables.append(current_table)
|
| 181 |
+
|
| 182 |
+
return tables
|
| 183 |
+
|
| 184 |
+
def create_excel_from_markdown_tables(tables):
|
| 185 |
+
"""Create Excel file from markdown tables"""
|
| 186 |
+
excel_buffer = BytesIO()
|
| 187 |
+
|
| 188 |
+
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
|
| 189 |
+
for i, table in enumerate(tables):
|
| 190 |
+
if table:
|
| 191 |
+
# Convert table to DataFrame
|
| 192 |
+
df = pd.DataFrame(table[1:], columns=table[0])
|
| 193 |
+
|
| 194 |
+
# Save to Excel sheet
|
| 195 |
+
sheet_name = f"Table_{i+1}"
|
| 196 |
+
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
| 197 |
+
|
| 198 |
+
excel_buffer.seek(0)
|
| 199 |
+
return excel_buffer
|
| 200 |
+
|
| 201 |
+
def create_word_from_markdown(markdown_text, output_file):
|
| 202 |
+
"""Create Word document from markdown text"""
|
| 203 |
+
doc = Document()
|
| 204 |
+
|
| 205 |
+
lines = markdown_text.split('\n')
|
| 206 |
+
current_table = []
|
| 207 |
+
in_table = False
|
| 208 |
+
|
| 209 |
+
for line in lines:
|
| 210 |
+
# Handle headers
|
| 211 |
+
if line.startswith('#'):
|
| 212 |
+
level = len(line.split()[0]) # Count the number of '#'
|
| 213 |
+
text = line.lstrip('#').strip()
|
| 214 |
+
doc.add_heading(text, level=min(level, 9))
|
| 215 |
+
|
| 216 |
+
# Handle tables
|
| 217 |
+
elif '|' in line:
|
| 218 |
+
# Skip separator lines
|
| 219 |
+
if re.match(r'^[\s|:-]+$', line):
|
| 220 |
+
continue
|
| 221 |
+
|
| 222 |
+
# Process table row
|
| 223 |
+
cells = [cell.strip() for cell in line.split('|')[1:-1]]
|
| 224 |
+
if cells:
|
| 225 |
+
if not in_table:
|
| 226 |
+
in_table = True
|
| 227 |
+
current_table = []
|
| 228 |
+
current_table.append(cells)
|
| 229 |
+
|
| 230 |
+
# Handle end of table
|
| 231 |
+
elif in_table:
|
| 232 |
+
if current_table:
|
| 233 |
+
table = doc.add_table(rows=len(current_table), cols=len(current_table[0]))
|
| 234 |
+
table.style = 'Table Grid'
|
| 235 |
+
|
| 236 |
+
for i, row in enumerate(current_table):
|
| 237 |
+
for j, cell in enumerate(row):
|
| 238 |
+
table.cell(i, j).text = cell
|
| 239 |
+
|
| 240 |
+
doc.add_paragraph() # Add space after table
|
| 241 |
+
current_table = []
|
| 242 |
+
in_table = False
|
| 243 |
+
|
| 244 |
+
# Handle checkbox lists
|
| 245 |
+
elif line.strip().startswith('- ['):
|
| 246 |
+
p = doc.add_paragraph()
|
| 247 |
+
run = p.add_run()
|
| 248 |
+
if 'x' in line or 'X' in line:
|
| 249 |
+
run.add_text("☑ " + line[5:].strip())
|
| 250 |
+
else:
|
| 251 |
+
run.add_text("☐ " + line[5:].strip())
|
| 252 |
+
|
| 253 |
+
# Handle regular paragraphs
|
| 254 |
+
elif line.strip():
|
| 255 |
+
doc.add_paragraph(line.strip())
|
| 256 |
+
|
| 257 |
+
# Handle the last table if exists
|
| 258 |
+
if in_table and current_table:
|
| 259 |
+
table = doc.add_table(rows=len(current_table), cols=len(current_table[0]))
|
| 260 |
+
table.style = 'Table Grid'
|
| 261 |
+
|
| 262 |
+
for i, row in enumerate(current_table):
|
| 263 |
+
for j, cell in enumerate(row):
|
| 264 |
+
table.cell(i, j).text = cell
|
| 265 |
+
|
| 266 |
+
doc.save(output_file)
|
| 267 |
+
|
| 268 |
+
def create_markdown_file(result, output_file):
|
| 269 |
+
"""Create markdown file from analysis result"""
|
| 270 |
+
with open(output_file, 'w', encoding='utf-8') as md_file:
|
| 271 |
+
for page in result.pages:
|
| 272 |
+
# md_file.write(f"### Page {page.page_number}\n\n")
|
| 273 |
+
|
| 274 |
+
elements = []
|
| 275 |
+
elements.extend([(paragraph.bounding_regions[0].polygon[0].y + paragraph.bounding_regions[0].polygon[0].x*0.05, 'paragraph', paragraph)
|
| 276 |
+
for paragraph in result.paragraphs if paragraph.bounding_regions[0].page_number == page.page_number])
|
| 277 |
+
elements.sort(key=lambda x: x[0])
|
| 278 |
+
|
| 279 |
+
page_width = page.width / 2
|
| 280 |
+
min_distance = float('inf')
|
| 281 |
+
title_paragraph = None
|
| 282 |
+
|
| 283 |
+
for element in elements[:5]:
|
| 284 |
+
if element[1] == 'paragraph':
|
| 285 |
+
paragraph = element[2]
|
| 286 |
+
midpoint_x = (paragraph.bounding_regions[0].polygon[0].x + paragraph.bounding_regions[0].polygon[1].x) / 2
|
| 287 |
+
midpoint_y = paragraph.bounding_regions[0].polygon[0].y
|
| 288 |
+
distance = ((midpoint_x - page_width) ** 2 + midpoint_y ** 2) ** 0.5
|
| 289 |
+
if distance < min_distance:
|
| 290 |
+
min_distance = distance
|
| 291 |
+
title_paragraph = paragraph
|
| 292 |
+
|
| 293 |
+
if title_paragraph:
|
| 294 |
+
elements = [element for element in elements if element[2] != title_paragraph]
|
| 295 |
+
md_file.write(f"# {title_paragraph.content}\n\n")
|
| 296 |
+
|
| 297 |
+
elements.extend([(table.bounding_regions[0].polygon[0].y + table.bounding_regions[0].polygon[0].x*0.05, 'table', table)
|
| 298 |
+
for table in result.tables if table.bounding_regions[0].page_number == page.page_number])
|
| 299 |
+
elements.extend([(mark.polygon[0].y + mark.polygon[0].x*0.05, 'selection_mark', mark) for mark in page.selection_marks])
|
| 300 |
+
|
| 301 |
+
elements.sort(key=lambda x: x[0])
|
| 302 |
+
|
| 303 |
+
table_cells = set()
|
| 304 |
+
for _, element_type, element in elements:
|
| 305 |
+
if element_type == 'paragraph':
|
| 306 |
+
if any(is_element_inside_table(element, get_table_max_polygon(table)) for table in result.tables):
|
| 307 |
+
continue
|
| 308 |
+
md_file.write(f"{element.content}\n\n")
|
| 309 |
+
|
| 310 |
+
elif element_type == 'table':
|
| 311 |
+
for row_idx in range(element.row_count):
|
| 312 |
+
row_content = "| "
|
| 313 |
+
for col_idx in range(element.column_count):
|
| 314 |
+
cell_content = ""
|
| 315 |
+
for cell in element.cells:
|
| 316 |
+
if cell.row_index == row_idx and cell.column_index == col_idx:
|
| 317 |
+
cell_content = cell.content
|
| 318 |
+
table_cells.add((cell.bounding_regions[0].polygon[0].x, cell.bounding_regions[0].polygon[0].y))
|
| 319 |
+
break
|
| 320 |
+
row_content += f"{cell_content} | "
|
| 321 |
+
md_file.write(row_content + "\n")
|
| 322 |
+
md_file.write("\n")
|
| 323 |
+
|
| 324 |
+
elif element_type == 'selection_mark':
|
| 325 |
+
if element.state == "selected":
|
| 326 |
+
md_file.write("- [x] \n\n")
|
| 327 |
+
else:
|
| 328 |
+
md_file.write("- [ ] \n\n")
|
| 329 |
+
|
| 330 |
+
def create_word_file(result, output_file):
|
| 331 |
+
"""Create Word document from analysis result"""
|
| 332 |
+
# Create a new Word document
|
| 333 |
+
doc = Document()
|
| 334 |
+
|
| 335 |
+
# Analyze pages
|
| 336 |
+
for page in result.pages:
|
| 337 |
+
# Combine paragraphs, tables, and selection marks in the order they appear on the page
|
| 338 |
+
elements = []
|
| 339 |
+
elements.extend([(paragraph.bounding_regions[0].polygon[0].y + paragraph.bounding_regions[0].polygon[0].x*0.01, 'paragraph', paragraph)
|
| 340 |
+
for paragraph in result.paragraphs if paragraph.bounding_regions[0].page_number == page.page_number])
|
| 341 |
+
elements.sort(key=lambda x: x[0])
|
| 342 |
+
|
| 343 |
+
# Find the paragraph which is possible to be document title
|
| 344 |
+
page_width = page.width / 2
|
| 345 |
+
min_distance = float('inf')
|
| 346 |
+
title_paragraph = None
|
| 347 |
+
|
| 348 |
+
for element in elements[:5]:
|
| 349 |
+
if element[1] == 'paragraph':
|
| 350 |
+
paragraph = element[2]
|
| 351 |
+
midpoint_x = (paragraph.bounding_regions[0].polygon[0].x + paragraph.bounding_regions[0].polygon[1].x) / 2
|
| 352 |
+
midpoint_y = paragraph.bounding_regions[0].polygon[0].y
|
| 353 |
+
distance = ((midpoint_x - page_width) ** 2 + midpoint_y ** 2) ** 0.5
|
| 354 |
+
if distance < min_distance:
|
| 355 |
+
min_distance = distance
|
| 356 |
+
title_paragraph = paragraph
|
| 357 |
+
|
| 358 |
+
if title_paragraph:
|
| 359 |
+
elements = [element for element in elements if element[2] != title_paragraph]
|
| 360 |
+
doc.add_heading(title_paragraph.content, level=1)
|
| 361 |
+
|
| 362 |
+
# Continuous combine paragraphs, tables, and selection marks in the order they appear on the page
|
| 363 |
+
elements.extend([(table.bounding_regions[0].polygon[0].y + table.bounding_regions[0].polygon[0].x*0.01, 'table', table)
|
| 364 |
+
for table in result.tables if table.bounding_regions[0].page_number == page.page_number])
|
| 365 |
+
elements.extend([(mark.polygon[0].y + mark.polygon[0].x*0.01, 'selection_mark', mark)
|
| 366 |
+
for mark in page.selection_marks])
|
| 367 |
+
|
| 368 |
+
# Sort elements by the sum of their horizontal and vertical positions on the page
|
| 369 |
+
elements.sort(key=lambda x: x[0])
|
| 370 |
+
|
| 371 |
+
# Track table cells to avoid duplicating content
|
| 372 |
+
table_cells = set()
|
| 373 |
+
for _, element_type, element in elements:
|
| 374 |
+
if element_type == 'paragraph':
|
| 375 |
+
# Skip lines that are part of a table
|
| 376 |
+
if any(is_element_inside_table(element, get_table_max_polygon(table)) for table in result.tables):
|
| 377 |
+
continue
|
| 378 |
+
doc.add_paragraph(element.content)
|
| 379 |
+
elif element_type == 'table':
|
| 380 |
+
table = doc.add_table(rows=element.row_count, cols=element.column_count)
|
| 381 |
+
table.style = 'Table Grid'
|
| 382 |
+
for row_idx in range(element.row_count):
|
| 383 |
+
row_cells = table.rows[row_idx].cells
|
| 384 |
+
for col_idx in range(element.column_count):
|
| 385 |
+
cell_content = ""
|
| 386 |
+
for cell in element.cells:
|
| 387 |
+
if cell.row_index == row_idx and cell.column_index == col_idx:
|
| 388 |
+
cell_content = cell.content
|
| 389 |
+
table_cells.add((cell.bounding_regions[0].polygon[0].x, cell.bounding_regions[0].polygon[0].y))
|
| 390 |
+
break
|
| 391 |
+
row_cells[col_idx].text = cell_content
|
| 392 |
+
elif element_type == 'selection_mark':
|
| 393 |
+
p = doc.add_paragraph()
|
| 394 |
+
run = p.add_run()
|
| 395 |
+
if element.state == "selected":
|
| 396 |
+
run.add_text("☑ ")
|
| 397 |
+
else:
|
| 398 |
+
run.add_text("☐ ")
|
| 399 |
+
|
| 400 |
+
# Save Word document
|
| 401 |
+
doc.save(output_file)
|
| 402 |
+
|
| 403 |
+
def format_polygon(polygon):
|
| 404 |
+
"""Format polygon coordinates to string"""
|
| 405 |
+
if not polygon:
|
| 406 |
+
return "N/A"
|
| 407 |
+
return ", ".join([f"[{p.x}, {p.y}]" for p in polygon])
|
| 408 |
+
|
| 409 |
+
def get_table_max_polygon(table):
|
| 410 |
+
"""Get the maximum polygon coordinates for a table"""
|
| 411 |
+
first_cell = table.cells[0]
|
| 412 |
+
first_coordinate = first_cell.bounding_regions[0].polygon[0]
|
| 413 |
+
last_cell = table.cells[-1]
|
| 414 |
+
last_coordinate = last_cell.bounding_regions[0].polygon[-1]
|
| 415 |
+
return [first_coordinate, last_coordinate]
|
| 416 |
+
|
| 417 |
+
def is_element_inside_table(element, table_max_polygon):
|
| 418 |
+
"""Check if an element is inside a table"""
|
| 419 |
+
element_x = element.bounding_regions[0].polygon[0].x
|
| 420 |
+
element_y = element.bounding_regions[0].polygon[0].y
|
| 421 |
+
first_coordinate = table_max_polygon[0]
|
| 422 |
+
last_coordinate = table_max_polygon[1]
|
| 423 |
+
|
| 424 |
+
return (first_coordinate.x <= element_x <= last_coordinate.x and
|
| 425 |
+
first_coordinate.y <= element_y <= last_coordinate.y)
|
requirements.txt
CHANGED
|
@@ -6,3 +6,6 @@ opencv-python==4.8.1.78
|
|
| 6 |
numpy==1.26.2
|
| 7 |
scikit-image==0.22.0
|
| 8 |
matplotlib==3.8.2
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
numpy==1.26.2
|
| 7 |
scikit-image==0.22.0
|
| 8 |
matplotlib==3.8.2
|
| 9 |
+
azure-ai-formrecognizer==3.3.0
|
| 10 |
+
python-dotenv==1.0.0
|
| 11 |
+
python-docx==1.1.0
|