Spaces:
Running
Running
File size: 3,881 Bytes
efacc59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
#
import torch
import torch.nn.functional as F
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
loss = 0
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
m_DG = torch.median((dr - dg))
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss
def mel_loss(real_speech, generated_speech, mel_transforms):
loss = 0
for transform in mel_transforms:
mel_r = transform(real_speech)
mel_g = transform(generated_speech)
loss += F.l1_loss(mel_g, mel_r)
return loss
def OrthogonalityLos_old(speaker_embedding, emotion_embedding): #speaker_embedding[270,192] emotion_embedding[270,192]
#print("OrthogonalityLoss")
speaker_embedding_t = speaker_embedding.t() #[192,270]
dot_product_matrix = torch.matmul(emotion_embedding, speaker_embedding_t)#[270,270]
emotion_norms = torch.norm(emotion_embedding, dim=1, keepdim=True) #[270,1]
speaker_norms = torch.norm(speaker_embedding, dim=1, keepdim=True).t() #[1,270]
normalized_dot_product_matrix = dot_product_matrix / (emotion_norms * speaker_norms) #[270,270]
ort_loss = torch.norm(normalized_dot_product_matrix, p='fro')**2 #说话人与情感正交
cosine_sim = F.cosine_similarity(emotion_embedding.unsqueeze(2), speaker_embedding.unsqueeze(1), dim=-1) #【270,192,1】与[270, 1, 192]在最后一个维度计算cos相似度 cosine_sim形状是[270, 192]
cosine_ort_loss = torch.norm(cosine_sim.mean(dim=-1), p='fro') ** 2
#return 0.01 * (ort_loss + cosine_ort_loss) #ort_loss是2292.1016 cosine_ort_loss是0.0554 直接加是否合理? 目的就是是的情感与说话人正交? 那么就是分离解耦?
return 1 * (ort_loss * 0.001 + cosine_ort_loss*10)
#flow时候 ort_loss 2749.5303 cosine_ort_loss 0.0005
def OrthogonalityLoss(speaker_embedding, emotion_embedding): #speaker_embedding[270,192] emotion_embedding[270,192]
#print("OrthogonalityLoss")
speaker_embedding_t = speaker_embedding.t() #[192,270]
dot_product_matrix = torch.matmul(emotion_embedding, speaker_embedding_t)#[270,270]
emotion_norms = torch.norm(emotion_embedding, dim=1, keepdim=True) #[270,1]
speaker_norms = torch.norm(speaker_embedding, dim=1, keepdim=True).t() #[1,270]
normalized_dot_product_matrix = dot_product_matrix / (emotion_norms * speaker_norms) #[270,270]
ort_loss = torch.norm(normalized_dot_product_matrix, p='fro')**2 #说话人与情感正交
cosine_sim = F.cosine_similarity(emotion_embedding.unsqueeze(2), speaker_embedding.unsqueeze(1), dim=-1) #【270,192,1】与[270, 1, 192]在最后一个维度计算cos相似度 cosine_sim形状是[270, 192]
cosine_ort_loss = torch.norm(cosine_sim.mean(dim=-1), p='fro') ** 2
return 0.01 * (ort_loss + cosine_ort_loss) #ort_loss是2292.1016 cosine_ort_loss是0.0554 直接加是否合理? 目的就是是的情感与说话人正交? 那么就是分离解耦?
#return 1 * (ort_loss * 0.001 + cosine_ort_loss*10)
#flow时候 ort_loss 2749.5303 cosine_ort_loss 0.0005
def ContrastiveOrthogonalLoss(spk_pure, emo_pure, temperature=0.1):
# spk_pure, emo_pure: [B, D]
spk_pure = F.normalize(spk_pure, dim=-1)
emo_pure = F.normalize(emo_pure, dim=-1)
# 相似度矩阵
sim_matrix = torch.mm(spk_pure, emo_pure.T) / temperature # [B, B]
# 对角线是正样本对(同一个样本的 speaker vs emotion),但我们希望它们不相似!
# 所以我们最小化正样本对得分,最大化负样本对得分 → 反向 InfoNCE
labels = torch.arange(sim_matrix.size(0)).to(spk_pure.device)
loss = F.cross_entropy(-sim_matrix, labels) # 负号:让正样本对得分低
return loss |