File size: 12,563 Bytes
efacc59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e6152
 
efacc59
 
 
 
 
d0e6152
 
efacc59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c747137
 
efacc59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# 

# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from cosyvoice_rodis.utils.common import IGNORE_ID
from cosyvoice_rodis.transformer.label_smoothing_loss import LabelSmoothingLoss
from cosyvoice_rodis.utils.common import th_accuracy
from cosyvoice_rodis.utils.losses import OrthogonalityLoss

class TransformerLM(torch.nn.Module):
    def __init__(
            self,
            text_encoder_input_size: int,
            llm_input_size: int,
            llm_output_size: int,
            text_token_size: int,
            speech_token_size: int,
            text_encoder: torch.nn.Module,
            llm: torch.nn.Module,
            sampling: Callable,
            length_normalized_loss: bool = True,
            lsm_weight: float = 0.0,
            spk_embed_dim: int = 192,
            orth_loss: bool = False,
            cross_orth_loss: bool = False,
            emotion_embedding: bool = False,
    ):
        super().__init__()
        self.llm_input_size = llm_input_size
        self.speech_token_size = speech_token_size
        # 1. build text token inputs related modules
        self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
        self.text_encoder = text_encoder
        self.text_encoder_affine_layer = nn.Linear(
            self.text_encoder.output_size(),
            llm_input_size
        )

        # 2. build speech token language model related modules
        self.orth_loss = orth_loss
        self.cross_orth_loss = cross_orth_loss
        self.emotion_embedding = emotion_embedding

        self.sos_eos = 0
        self.task_id = 1
        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
        self.llm = llm
        self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
        self.criterion_ce = LabelSmoothingLoss(
            size=speech_token_size + 1,
            padding_idx=IGNORE_ID,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        # 3. [Optional] build speech token related modules
        self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size) #192-1024

        # 4. sampling method
        self.sampling = sampling

        if orth_loss:
            self.speaker_projector = nn.Linear(spk_embed_dim, spk_embed_dim)
            self.emotion_projector = nn.Linear(spk_embed_dim, spk_embed_dim)

    def encode(
            self,
            text: torch.Tensor,
            text_lengths: torch.Tensor,
    ):
        encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1) 
        encoder_out = self.text_encoder_affine_layer(encoder_out)
        return encoder_out, encoder_out_lens

    def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
        text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
        lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
                    for i in range(len(text_token))]
        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
        return lm_input, lm_input_len

    def forward(
    self,
    batch: dict,
    device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """
        Args:
            batch: input dic
            device: CPU or GPU
        Returns:
            loss and accurate 
        """

        text_token = batch['text_token'].to(device) 
        text_token_len = batch['text_token_len'].to(device)
        speech_token = batch['speech_token'].to(device)
        speech_token_len = batch['speech_token_len'].to(device)
        embedding = batch['embedding'].to(device)
        # 2. process emotion_embedding
        if self.emotion_embedding:
            emotion_embedding = batch['emotion_embedding'].to(device) 
        else:
            emotion_embedding = None

        # 3. cross loss
        if self.orth_loss and self.emotion_embedding:
            embedding = self.speaker_projector(embedding)
            emotion_embedding = self.emotion_projector(emotion_embedding)
            embedding += emotion_embedding
            if self.cross_orth_loss:
                orth_loss = 0.0
                contrastive_loss = 0.0
                batch_size = embedding.size(0)
                for i in range(batch_size):
                    for j in range(i + 1, batch_size):
                        contrastive_loss=torch.abs(torch.dot(embedding[i], emotion_embedding[j]))
                        orth_loss +=contrastive_loss

                if batch_size == 1:
                    orth_loss = 0
                else:
                    orth_loss /= (batch_size * (batch_size - 1)) / 2  
            else:
                orth_loss = OrthogonalityLoss(embedding, emotion_embedding)  
        else:
            orth_loss = torch.tensor(0.0).to(device)  
        
        

        lm_target = [
            torch.tensor(
                [IGNORE_ID] * (2 + text_token_len[i]) +  
                speech_token[i, :speech_token_len[i]].tolist() + 
                [self.speech_token_size]  # EOS token
            )
            for i in range(text_token.size(0))
        ]
        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)

        text_token = self.text_embedding(text_token)  #[B,T,512] 221,31,1024
        text_token, text_token_len = self.encode(text_token, text_token_len)

        embedding = F.normalize(embedding, dim=1)
        if embedding.dtype != self.spk_embed_affine_layer.weight.dtype:
            embedding = embedding.to(self.spk_embed_affine_layer.weight.dtype)
        embedding = self.spk_embed_affine_layer(embedding)
        embedding = embedding.unsqueeze(1) 

        if self.emotion_embedding and emotion_embedding is not None:
            emotion_embedding = F.normalize(emotion_embedding, dim=1)
            if emotion_embedding.dtype != self.spk_embed_affine_layer.weight.dtype:
                emotion_embedding = emotion_embedding.to(self.spk_embed_affine_layer.weight.dtype)
            emotion_embedding = self.spk_embed_affine_layer(emotion_embedding) 
            emotion_embedding = emotion_embedding.unsqueeze(1) 
            embedding += emotion_embedding 
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)

        speech_token = self.speech_embedding(speech_token)  
        lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
                                                         task_id_emb, speech_token, speech_token_len)

        # 6. run lm forward
        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) 
        logits = self.llm_decoder(lm_output) 
        loss = self.criterion_ce(logits, lm_target) 
        acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)

        if self.orth_loss and self.emotion_embedding:
            loss += orth_loss

        return {'loss': loss, 'acc': acc,"ce_loss":self.criterion_ce(logits, lm_target),"orth_loss":orth_loss,"contrastive_loss":contrastive_loss}

    def sampling_ids(
            self,
            weighted_scores: torch.Tensor,
            decoded_tokens: List,
            sampling: int,
            ignore_eos: bool = True,
    ):
        while True:
            top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
            if (not ignore_eos) or (self.speech_token_size not in top_ids):
                break
        return top_ids

    @torch.inference_mode()
    def inference(
            self,
            text: torch.Tensor,
            text_len: torch.Tensor,
            prompt_text: torch.Tensor,
            prompt_text_len: torch.Tensor,
            prompt_speech_token: torch.Tensor,
            prompt_speech_token_len: torch.Tensor,
            embedding: torch.Tensor,
            emotion_embedding: Optional[torch.Tensor] = None,  
            sampling: int = 25,
            max_token_text_ratio: float = 20,
            min_token_text_ratio: float = 2,
    ) -> Generator[torch.Tensor, None, None]:
        device = text.device
        text = torch.concat([prompt_text, text], dim=1)
        text_len += prompt_text_len
        text = self.text_embedding(text)

        # 1. encode text
        text, text_len = self.encode(text, text_len)
        
        # 2. encode embedding
        if embedding.shape[0] != 0:
            embedding = F.normalize(embedding, dim=1)
            embedding = self.spk_embed_affine_layer(embedding)
            embedding = embedding.unsqueeze(dim=1)
        else:
            embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) 

        # 3. handle emotion embedding
        if self.emotion_embedding and emotion_embedding is not None:
            emotion_embedding = F.normalize(emotion_embedding.unsqueeze(0).to(torch.float32), dim=1) 
            if emotion_embedding.dtype != self.spk_embed_affine_layer.weight.dtype:
                emotion_embedding = emotion_embedding.to(self.spk_embed_affine_layer.weight.dtype)
            emotion_embedding = self.spk_embed_affine_layer(emotion_embedding)
            emotion_embedding = emotion_embedding.unsqueeze(dim=1) #  * 1.5
            embedding += emotion_embedding 

        # 4. concat llm_input
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) 
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) 
        if prompt_speech_token_len != 0:
            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) 
        else:
            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
        lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)

        # 5. cal min/max_length
        min_len = int((text_len - prompt_text_len) * min_token_text_ratio) 
        max_len = int((text_len - prompt_text_len) * max_token_text_ratio) 

        # 6. step by step decode
        out_tokens = []
        offset = 0
        att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
        for i in range(max_len):
            y_pred, att_cache, cnn_cache = self.llm.forward_chunk(
                lm_input, offset=offset, required_cache_size=-1,
                att_cache=att_cache, cnn_cache=cnn_cache,
                att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device).to(torch.bool)))
            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
            # force continue decode first token
            if i == 0:
                logp[:, self.speech_token_size] = -float('inf')
            top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
            if top_ids == self.speech_token_size:
                break
            # in stream mode, yield token one by one
            yield top_ids
            out_tokens.append(top_ids)
            offset += lm_input.size(1)
            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)