Spaces:
Running
Running
File size: 12,563 Bytes
efacc59 d0e6152 efacc59 d0e6152 efacc59 c747137 efacc59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
#
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Callable, List, Generator
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from cosyvoice_rodis.utils.common import IGNORE_ID
from cosyvoice_rodis.transformer.label_smoothing_loss import LabelSmoothingLoss
from cosyvoice_rodis.utils.common import th_accuracy
from cosyvoice_rodis.utils.losses import OrthogonalityLoss
class TransformerLM(torch.nn.Module):
def __init__(
self,
text_encoder_input_size: int,
llm_input_size: int,
llm_output_size: int,
text_token_size: int,
speech_token_size: int,
text_encoder: torch.nn.Module,
llm: torch.nn.Module,
sampling: Callable,
length_normalized_loss: bool = True,
lsm_weight: float = 0.0,
spk_embed_dim: int = 192,
orth_loss: bool = False,
cross_orth_loss: bool = False,
emotion_embedding: bool = False,
):
super().__init__()
self.llm_input_size = llm_input_size
self.speech_token_size = speech_token_size
# 1. build text token inputs related modules
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
self.text_encoder = text_encoder
self.text_encoder_affine_layer = nn.Linear(
self.text_encoder.output_size(),
llm_input_size
)
# 2. build speech token language model related modules
self.orth_loss = orth_loss
self.cross_orth_loss = cross_orth_loss
self.emotion_embedding = emotion_embedding
self.sos_eos = 0
self.task_id = 1
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
self.llm = llm
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
self.criterion_ce = LabelSmoothingLoss(
size=speech_token_size + 1,
padding_idx=IGNORE_ID,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
# 3. [Optional] build speech token related modules
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size) #192-1024
# 4. sampling method
self.sampling = sampling
if orth_loss:
self.speaker_projector = nn.Linear(spk_embed_dim, spk_embed_dim)
self.emotion_projector = nn.Linear(spk_embed_dim, spk_embed_dim)
def encode(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
):
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
encoder_out = self.text_encoder_affine_layer(encoder_out)
return encoder_out, encoder_out_lens
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
for i in range(len(text_token))]
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
return lm_input, lm_input_len
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
"""
Args:
batch: input dic
device: CPU or GPU
Returns:
loss and accurate
"""
text_token = batch['text_token'].to(device)
text_token_len = batch['text_token_len'].to(device)
speech_token = batch['speech_token'].to(device)
speech_token_len = batch['speech_token_len'].to(device)
embedding = batch['embedding'].to(device)
# 2. process emotion_embedding
if self.emotion_embedding:
emotion_embedding = batch['emotion_embedding'].to(device)
else:
emotion_embedding = None
# 3. cross loss
if self.orth_loss and self.emotion_embedding:
embedding = self.speaker_projector(embedding)
emotion_embedding = self.emotion_projector(emotion_embedding)
embedding += emotion_embedding
if self.cross_orth_loss:
orth_loss = 0.0
contrastive_loss = 0.0
batch_size = embedding.size(0)
for i in range(batch_size):
for j in range(i + 1, batch_size):
contrastive_loss=torch.abs(torch.dot(embedding[i], emotion_embedding[j]))
orth_loss +=contrastive_loss
if batch_size == 1:
orth_loss = 0
else:
orth_loss /= (batch_size * (batch_size - 1)) / 2
else:
orth_loss = OrthogonalityLoss(embedding, emotion_embedding)
else:
orth_loss = torch.tensor(0.0).to(device)
lm_target = [
torch.tensor(
[IGNORE_ID] * (2 + text_token_len[i]) +
speech_token[i, :speech_token_len[i]].tolist() +
[self.speech_token_size] # EOS token
)
for i in range(text_token.size(0))
]
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
text_token = self.text_embedding(text_token) #[B,T,512] 221,31,1024
text_token, text_token_len = self.encode(text_token, text_token_len)
embedding = F.normalize(embedding, dim=1)
if embedding.dtype != self.spk_embed_affine_layer.weight.dtype:
embedding = embedding.to(self.spk_embed_affine_layer.weight.dtype)
embedding = self.spk_embed_affine_layer(embedding)
embedding = embedding.unsqueeze(1)
if self.emotion_embedding and emotion_embedding is not None:
emotion_embedding = F.normalize(emotion_embedding, dim=1)
if emotion_embedding.dtype != self.spk_embed_affine_layer.weight.dtype:
emotion_embedding = emotion_embedding.to(self.spk_embed_affine_layer.weight.dtype)
emotion_embedding = self.spk_embed_affine_layer(emotion_embedding)
emotion_embedding = emotion_embedding.unsqueeze(1)
embedding += emotion_embedding
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
speech_token = self.speech_embedding(speech_token)
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
task_id_emb, speech_token, speech_token_len)
# 6. run lm forward
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
logits = self.llm_decoder(lm_output)
loss = self.criterion_ce(logits, lm_target)
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
if self.orth_loss and self.emotion_embedding:
loss += orth_loss
return {'loss': loss, 'acc': acc,"ce_loss":self.criterion_ce(logits, lm_target),"orth_loss":orth_loss,"contrastive_loss":contrastive_loss}
def sampling_ids(
self,
weighted_scores: torch.Tensor,
decoded_tokens: List,
sampling: int,
ignore_eos: bool = True,
):
while True:
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
if (not ignore_eos) or (self.speech_token_size not in top_ids):
break
return top_ids
@torch.inference_mode()
def inference(
self,
text: torch.Tensor,
text_len: torch.Tensor,
prompt_text: torch.Tensor,
prompt_text_len: torch.Tensor,
prompt_speech_token: torch.Tensor,
prompt_speech_token_len: torch.Tensor,
embedding: torch.Tensor,
emotion_embedding: Optional[torch.Tensor] = None,
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
) -> Generator[torch.Tensor, None, None]:
device = text.device
text = torch.concat([prompt_text, text], dim=1)
text_len += prompt_text_len
text = self.text_embedding(text)
# 1. encode text
text, text_len = self.encode(text, text_len)
# 2. encode embedding
if embedding.shape[0] != 0:
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
embedding = embedding.unsqueeze(dim=1)
else:
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
# 3. handle emotion embedding
if self.emotion_embedding and emotion_embedding is not None:
emotion_embedding = F.normalize(emotion_embedding.unsqueeze(0).to(torch.float32), dim=1)
if emotion_embedding.dtype != self.spk_embed_affine_layer.weight.dtype:
emotion_embedding = emotion_embedding.to(self.spk_embed_affine_layer.weight.dtype)
emotion_embedding = self.spk_embed_affine_layer(emotion_embedding)
emotion_embedding = emotion_embedding.unsqueeze(dim=1) # * 1.5
embedding += emotion_embedding
# 4. concat llm_input
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if prompt_speech_token_len != 0:
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
else:
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
# 5. cal min/max_length
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
# 6. step by step decode
out_tokens = []
offset = 0
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
for i in range(max_len):
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(
lm_input, offset=offset, required_cache_size=-1,
att_cache=att_cache, cnn_cache=cnn_cache,
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device).to(torch.bool)))
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
# force continue decode first token
if i == 0:
logp[:, self.speech_token_size] = -float('inf')
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
if top_ids == self.speech_token_size:
break
# in stream mode, yield token one by one
yield top_ids
out_tokens.append(top_ids)
offset += lm_input.size(1)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|