Spaces:
Running
Running
| # | |
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Dict, Optional, Callable, List, Generator | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils.rnn import pad_sequence, unpad_sequence | |
| from cosyvoice_rodis.utils.common import IGNORE_ID | |
| from cosyvoice_rodis.transformer.label_smoothing_loss import LabelSmoothingLoss | |
| from cosyvoice_rodis.utils.common import th_accuracy | |
| from cosyvoice_rodis.utils.losses import OrthogonalityLoss | |
| class TransformerLM(torch.nn.Module): | |
| def __init__( | |
| self, | |
| text_encoder_input_size: int, | |
| llm_input_size: int, | |
| llm_output_size: int, | |
| text_token_size: int, | |
| speech_token_size: int, | |
| text_encoder: torch.nn.Module, | |
| llm: torch.nn.Module, | |
| sampling: Callable, | |
| length_normalized_loss: bool = True, | |
| lsm_weight: float = 0.0, | |
| spk_embed_dim: int = 192, | |
| orth_loss: bool = False, | |
| cross_orth_loss: bool = False, | |
| emotion_embedding: bool = False, | |
| ): | |
| super().__init__() | |
| self.llm_input_size = llm_input_size | |
| self.speech_token_size = speech_token_size | |
| # 1. build text token inputs related modules | |
| self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size) | |
| self.text_encoder = text_encoder | |
| self.text_encoder_affine_layer = nn.Linear( | |
| self.text_encoder.output_size(), | |
| llm_input_size | |
| ) | |
| # 2. build speech token language model related modules | |
| self.orth_loss = orth_loss | |
| self.cross_orth_loss = cross_orth_loss | |
| self.emotion_embedding = emotion_embedding | |
| self.sos_eos = 0 | |
| self.task_id = 1 | |
| self.llm_embedding = torch.nn.Embedding(2, llm_input_size) | |
| self.llm = llm | |
| self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1) | |
| self.criterion_ce = LabelSmoothingLoss( | |
| size=speech_token_size + 1, | |
| padding_idx=IGNORE_ID, | |
| smoothing=lsm_weight, | |
| normalize_length=length_normalized_loss, | |
| ) | |
| # 3. [Optional] build speech token related modules | |
| self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size) | |
| self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size) #192-1024 | |
| # 4. sampling method | |
| self.sampling = sampling | |
| if orth_loss: | |
| self.speaker_projector = nn.Linear(spk_embed_dim, spk_embed_dim) | |
| self.emotion_projector = nn.Linear(spk_embed_dim, spk_embed_dim) | |
| def encode( | |
| self, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| ): | |
| encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1) | |
| encoder_out_lens = encoder_mask.squeeze(1).sum(1) | |
| encoder_out = self.text_encoder_affine_layer(encoder_out) | |
| return encoder_out, encoder_out_lens | |
| def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len): | |
| text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True) | |
| speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) | |
| lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) | |
| for i in range(len(text_token))] | |
| lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) | |
| lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) | |
| return lm_input, lm_input_len | |
| def forward( | |
| self, | |
| batch: dict, | |
| device: torch.device, | |
| ) -> Dict[str, Optional[torch.Tensor]]: | |
| """ | |
| Args: | |
| batch: input dic | |
| device: CPU or GPU | |
| Returns: | |
| loss and accurate | |
| """ | |
| text_token = batch['text_token'].to(device) | |
| text_token_len = batch['text_token_len'].to(device) | |
| speech_token = batch['speech_token'].to(device) | |
| speech_token_len = batch['speech_token_len'].to(device) | |
| embedding = batch['embedding'].to(device) | |
| # 2. process emotion_embedding | |
| if self.emotion_embedding: | |
| emotion_embedding = batch['emotion_embedding'].to(device) | |
| else: | |
| emotion_embedding = None | |
| # 3. cross loss | |
| if self.orth_loss and self.emotion_embedding: | |
| embedding = self.speaker_projector(embedding) | |
| emotion_embedding = self.emotion_projector(emotion_embedding) | |
| embedding += emotion_embedding | |
| if self.cross_orth_loss: | |
| orth_loss = 0.0 | |
| contrastive_loss = 0.0 | |
| batch_size = embedding.size(0) | |
| for i in range(batch_size): | |
| for j in range(i + 1, batch_size): | |
| contrastive_loss=torch.abs(torch.dot(embedding[i], emotion_embedding[j])) | |
| orth_loss +=contrastive_loss | |
| if batch_size == 1: | |
| orth_loss = 0 | |
| else: | |
| orth_loss /= (batch_size * (batch_size - 1)) / 2 | |
| else: | |
| orth_loss = OrthogonalityLoss(embedding, emotion_embedding) | |
| else: | |
| orth_loss = torch.tensor(0.0).to(device) | |
| lm_target = [ | |
| torch.tensor( | |
| [IGNORE_ID] * (2 + text_token_len[i]) + | |
| speech_token[i, :speech_token_len[i]].tolist() + | |
| [self.speech_token_size] # EOS token | |
| ) | |
| for i in range(text_token.size(0)) | |
| ] | |
| lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device) | |
| text_token = self.text_embedding(text_token) #[B,T,512] 221,31,1024 | |
| text_token, text_token_len = self.encode(text_token, text_token_len) | |
| embedding = F.normalize(embedding, dim=1) | |
| if embedding.dtype != self.spk_embed_affine_layer.weight.dtype: | |
| embedding = embedding.to(self.spk_embed_affine_layer.weight.dtype) | |
| embedding = self.spk_embed_affine_layer(embedding) | |
| embedding = embedding.unsqueeze(1) | |
| if self.emotion_embedding and emotion_embedding is not None: | |
| emotion_embedding = F.normalize(emotion_embedding, dim=1) | |
| if emotion_embedding.dtype != self.spk_embed_affine_layer.weight.dtype: | |
| emotion_embedding = emotion_embedding.to(self.spk_embed_affine_layer.weight.dtype) | |
| emotion_embedding = self.spk_embed_affine_layer(emotion_embedding) | |
| emotion_embedding = emotion_embedding.unsqueeze(1) | |
| embedding += emotion_embedding | |
| sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
| task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
| speech_token = self.speech_embedding(speech_token) | |
| lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, | |
| task_id_emb, speech_token, speech_token_len) | |
| # 6. run lm forward | |
| lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) | |
| logits = self.llm_decoder(lm_output) | |
| loss = self.criterion_ce(logits, lm_target) | |
| acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID) | |
| if self.orth_loss and self.emotion_embedding: | |
| loss += orth_loss | |
| return {'loss': loss, 'acc': acc,"ce_loss":self.criterion_ce(logits, lm_target),"orth_loss":orth_loss,"contrastive_loss":contrastive_loss} | |
| def sampling_ids( | |
| self, | |
| weighted_scores: torch.Tensor, | |
| decoded_tokens: List, | |
| sampling: int, | |
| ignore_eos: bool = True, | |
| ): | |
| while True: | |
| top_ids = self.sampling(weighted_scores, decoded_tokens, sampling) | |
| if (not ignore_eos) or (self.speech_token_size not in top_ids): | |
| break | |
| return top_ids | |
| def inference( | |
| self, | |
| text: torch.Tensor, | |
| text_len: torch.Tensor, | |
| prompt_text: torch.Tensor, | |
| prompt_text_len: torch.Tensor, | |
| prompt_speech_token: torch.Tensor, | |
| prompt_speech_token_len: torch.Tensor, | |
| embedding: torch.Tensor, | |
| emotion_embedding: Optional[torch.Tensor] = None, | |
| sampling: int = 25, | |
| max_token_text_ratio: float = 20, | |
| min_token_text_ratio: float = 2, | |
| ) -> Generator[torch.Tensor, None, None]: | |
| device = text.device | |
| text = torch.concat([prompt_text, text], dim=1) | |
| text_len += prompt_text_len | |
| text = self.text_embedding(text) | |
| # 1. encode text | |
| text, text_len = self.encode(text, text_len) | |
| # 2. encode embedding | |
| if embedding.shape[0] != 0: | |
| embedding = F.normalize(embedding, dim=1) | |
| embedding = self.spk_embed_affine_layer(embedding) | |
| embedding = embedding.unsqueeze(dim=1) | |
| else: | |
| embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) | |
| # 3. handle emotion embedding | |
| if self.emotion_embedding and emotion_embedding is not None: | |
| emotion_embedding = F.normalize(emotion_embedding.unsqueeze(0).to(torch.float32), dim=1) | |
| if emotion_embedding.dtype != self.spk_embed_affine_layer.weight.dtype: | |
| emotion_embedding = emotion_embedding.to(self.spk_embed_affine_layer.weight.dtype) | |
| emotion_embedding = self.spk_embed_affine_layer(emotion_embedding) | |
| emotion_embedding = emotion_embedding.unsqueeze(dim=1) # * 1.5 | |
| embedding += emotion_embedding | |
| # 4. concat llm_input | |
| sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
| task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
| if prompt_speech_token_len != 0: | |
| prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) | |
| else: | |
| prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) | |
| lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1) | |
| # 5. cal min/max_length | |
| min_len = int((text_len - prompt_text_len) * min_token_text_ratio) | |
| max_len = int((text_len - prompt_text_len) * max_token_text_ratio) | |
| # 6. step by step decode | |
| out_tokens = [] | |
| offset = 0 | |
| att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device) | |
| for i in range(max_len): | |
| y_pred, att_cache, cnn_cache = self.llm.forward_chunk( | |
| lm_input, offset=offset, required_cache_size=-1, | |
| att_cache=att_cache, cnn_cache=cnn_cache, | |
| att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device).to(torch.bool))) | |
| logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) | |
| # force continue decode first token | |
| if i == 0: | |
| logp[:, self.speech_token_size] = -float('inf') | |
| top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() | |
| if top_ids == self.speech_token_size: | |
| break | |
| # in stream mode, yield token one by one | |
| yield top_ids | |
| out_tokens.append(top_ids) | |
| offset += lm_input.size(1) | |
| lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) | |