# import logging import random from typing import Dict, Optional import os os.environ["TORCH_JIT_DISABLE"] = "1" import torch import torch.nn as nn from torch.nn import functional as F from omegaconf import DictConfig from cosyvoice_rodis.utils.mask import make_pad_mask from cosyvoice_rodis.utils.losses import OrthogonalityLoss class MaskedDiffWithXvec(torch.nn.Module): def __init__(self, input_size: int = 512, output_size: int = 80, spk_embed_dim: int = 192, output_type: str = "mel", vocab_size: int = 4096, input_frame_rate: int = 50, only_mask_loss: bool = True, encoder: torch.nn.Module = None, length_regulator: torch.nn.Module = None, decoder: torch.nn.Module = None, decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}, mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}, flow_emotion_embedding: bool = False, flow_orth_loss: bool = False, cross_orth_loss: bool = False): super().__init__() self.input_size = input_size self.output_size = output_size self.decoder_conf = decoder_conf self.mel_feat_conf = mel_feat_conf self.vocab_size = vocab_size self.output_type = output_type self.input_frame_rate = input_frame_rate logging.info(f"input frame rate={self.input_frame_rate}") self.input_embedding = nn.Embedding(vocab_size, input_size) self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size) self.encoder = encoder self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size) self.decoder = decoder self.length_regulator = length_regulator self.only_mask_loss = only_mask_loss self.flow_emotion_embedding = flow_emotion_embedding self.flow_orth_loss = flow_orth_loss self.cross_orth_loss = cross_orth_loss if self.flow_emotion_embedding: self.flow_emotion_embedding_proj = torch.nn.Linear(spk_embed_dim, spk_embed_dim) self.speaker_projector = nn.Linear(spk_embed_dim, spk_embed_dim) def forward( self, batch: dict, device: torch.device, ) -> Dict[str, Optional[torch.Tensor]]: token = batch['speech_token'].to(device) token_len = batch['speech_token_len'].to(device) feat = batch['speech_feat'].to(device) feat_len = batch['speech_feat_len'].to(device) embedding = batch['embedding'].to(device) if self.flow_emotion_embedding: flow_emotion_embedding = batch['emotion_embedding'].to(device) #[270,192] flow_emotion_embedding = F.normalize(flow_emotion_embedding, dim=1) flow_emotion_embedding = self.flow_emotion_embedding_proj(flow_emotion_embedding) embedding = self.speaker_projector(embedding) if self.cross_orth_loss: #false orth_loss = 0.0 batch_size = embedding.size(0) if batch_size > 1: batch_contrastive_orth_loss=0 for i in range(batch_size): for j in range(i + 1, batch_size): batch_contrastive_orth_loss =batch_contrastive_orth_loss+ torch.abs(torch.dot(embedding[i], flow_emotion_embedding[j])) num_pairs = (batch_size * (batch_size - 1)) / 2 batch_contrastive_orth_loss = batch_contrastive_orth_loss / num_pairs else: batch_contrastive_orth_loss = 0 orth_loss = OrthogonalityLoss(embedding, flow_emotion_embedding) else: orth_loss = OrthogonalityLoss(embedding, flow_emotion_embedding) embedding = F.normalize(embedding, dim=1) embedding = self.spk_embed_affine_layer(embedding) mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device) token = self.input_embedding(torch.clamp(token, min=0)) * mask # text encode h, h_lengths = self.encoder(token, token_len, flow_emotion_embedding) h = self.encoder_proj(h) h, h_lengths = self.length_regulator(h, feat_len) # get conditions conds = torch.zeros(feat.shape, device=token.device) for i, j in enumerate(feat_len): if random.random() < 0.5: continue index = random.randint(0, int(0.3 * j)) conds[i, :index] = feat[i, :index] conds = conds.transpose(1, 2) mask = (~make_pad_mask(feat_len)).to(h) feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1) mse_loss, _ = self.decoder.compute_loss( feat.transpose(1, 2).contiguous(), mask.unsqueeze(1), h.transpose(1, 2).contiguous(), embedding, cond=conds ) if self.flow_orth_loss and self.flow_emotion_embedding: loss =mse_loss+ orth_loss+batch_contrastive_orth_loss return {'loss': loss, "mse_loss":mse_loss,"orth_loss":orth_loss,"contrastive_loss":batch_contrastive_orth_loss} @torch.inference_mode() def inference(self, token, token_len, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding, flow_cache, flow_emotion_embedding=None): assert token.shape[0] == 1 if self.flow_emotion_embedding and flow_emotion_embedding is not None: flow_emotion_embedding = F.normalize(flow_emotion_embedding.unsqueeze(0).to(torch.float16), dim=1) flow_emotion_embedding = self.flow_emotion_embedding_proj(flow_emotion_embedding) embedding = self.speaker_projector(embedding) embedding += flow_emotion_embedding # xvec projection embedding = F.normalize(embedding, dim=1) embedding = self.spk_embed_affine_layer(embedding) # concat text and prompt_text token_len1, token_len2 = prompt_token.shape[1], token.shape[1] token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding) token = self.input_embedding(torch.clamp(token, min=0).long()) * mask # text encode print("token:", token, token_len, flow_emotion_embedding) print("token shape:", token.shape(), token_len.shape(), flow_emotion_embedding.shape()) h, h_lengths = self.encoder(token, token_len, flow_emotion_embedding) h = self.encoder_proj(h) #torch.Size([1, 358, 80]) mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256) h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate) # get conditions conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device) conds[:, :mel_len1] = prompt_feat conds = conds.transpose(1, 2) mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) feat, flow_cache = self.decoder( mu=h.transpose(1, 2).contiguous(), mask=mask.unsqueeze(1), spks=embedding, cond=conds, n_timesteps=10, prompt_len=mel_len1, flow_cache=flow_cache ) feat = feat[:, :, mel_len1:] assert feat.shape[2] == mel_len2 return feat, flow_cache