Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2025 AIDC-AI | |
| # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. | |
| from typing import List | |
| import torch | |
| from transformers import AutoTokenizer | |
| class OvisTokenizer: | |
| """ | |
| Tokenizing and encoding/decoding text using the Ovis tokenizer. | |
| Args: | |
| model_path (str): Path to the tokenzier from hugging face. | |
| """ | |
| def __init__( | |
| self, | |
| model_path: str = "Ovis2.5-2B", | |
| max_length: int = 256, | |
| **hf_kwargs | |
| ): | |
| super().__init__() | |
| self._tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| self.system_prompt = "Describe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: " | |
| self.user_prompt_begin_id = 28 | |
| self._max_length = max_length + self.user_prompt_begin_id | |
| def encode( | |
| self, | |
| s: str, | |
| system_prompt = "" | |
| ) -> torch.Tensor: | |
| """ | |
| Encode the prompt text into tokens. | |
| """ | |
| if len(system_prompt) == 0: | |
| system_prompt = self.system_prompt | |
| messages = [{ | |
| "role": "user", | |
| "content": system_prompt + s, | |
| }] | |
| text = self._tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True, | |
| enable_thinking=False | |
| ) | |
| tokens = self._tokenizer( | |
| text, | |
| padding="max_length", | |
| truncation=True, | |
| max_length=self._max_length, | |
| return_tensors="pt", | |
| add_special_tokens=False, | |
| ) | |
| return tokens.input_ids, tokens.attention_mask | |
| def decode(self, t: List[int]) -> str: | |
| return self._tokenizer.decode(t, skip_special_tokens=False) | |
| def build_ovis_tokenizer(tokenizer_path): | |
| max_ovis_encoding_len = 256 | |
| ovis_tokenizer = OvisTokenizer( | |
| tokenizer_path, | |
| max_length=max_ovis_encoding_len, | |
| ) | |
| return ovis_tokenizer | |
| if __name__ == "__main__": | |
| ovis_path = "/mnt/workspace/cv_multimodal/aigc/huggingface/Ovis2.5-2B" | |
| text = "a cute cat" | |
| ovis_tokenizer = OvisTokenizer(ovis_path, max_length=256) | |
| ovis_token = ovis_tokenizer.encode(text) | |
| import pdb | |
| pdb.set_trace() | |