import os import torch import gradio as gr import spaces import random import numpy as np from safetensors.torch import load_file from huggingface_hub import hf_hub_download from diffusers.utils import logging from PIL import Image from ovis_image.model.tokenizer import build_ovis_tokenizer from ovis_image.model.autoencoder import load_ae from ovis_image.model.hf_embedder import OvisEmbedder from ovis_image.model.model import OvisImageModel from ovis_image.sampling import generate_image from ovis_image import ovis_image_configs logging.set_verbosity_error() # DEVICE = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max device = "cuda" _dtype = torch.bfloat16 hf_token = os.getenv("HF_TOKEN") print("init ovis_image") model_config = ovis_image_configs["ovis-image-7b"] ovis_image = OvisImageModel(model_config) ovis_image_path = hf_hub_download( repo_id="AIDC-AI/Ovis-Image-7B", filename="ovis_image.safetensors", token=hf_token, ) model_state_dict = load_file(ovis_image_path) missing_keys, unexpected_keys = ovis_image.load_state_dict(model_state_dict) print(f"Load Missing Keys {missing_keys}") print(f"Load Unexpected Keys {unexpected_keys}") ovis_image = ovis_image.to(device=device, dtype=_dtype) ovis_image.eval() print("init vae") vae_path = hf_hub_download( repo_id="AIDC-AI/Ovis-Image-7B", filename="ae.safetensors", token=hf_token, ) autoencoder = load_ae( vae_path, model_config.autoencoder_params, device=device, dtype=_dtype, random_init=False, ) autoencoder.eval() print("init ovis") # ovis_path = hf_hub_download( # repo_id="AIDC-AI/Ovis-Image-7B", # subfolder="Ovis2.5-2B", # token=hf_token, # ) ovis_tokenizer = build_ovis_tokenizer( "AIDC-AI/Ovis2.5-2B", ) ovis_encoder = OvisEmbedder( model_path="AIDC-AI/Ovis2.5-2B", random_init=False, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, ).to(device=device, dtype=_dtype) @spaces.GPU(duration=75) def generate(prompt, img_height=1024, img_width=1024, seed=42, steps=50, guidance_scale=5.0): print(f'inference with prompt : {prompt}, size: {img_height}x{img_width}, seed : {seed}, step : {steps}, cfg : {guidance_scale}') image = generate_image( device=next(ovis_image.parameters()).device, dtype=_dtype, model=ovis_image, prompt=prompt, autoencoder=autoencoder, ovis_tokenizer=ovis_tokenizer, ovis_encoder=ovis_encoder, img_height=img_height, img_width=img_width, denoising_steps=steps, cfg_scale=guidance_scale, seed=seed, ) # bring into PIL format and save image = image.clamp(-1, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = (image * 255).round().astype("uint8") return image[0] examples = [ "Solar punk vehicle in a bustling city", "An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket", "An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Ovis-Image [[code](https://github.com/AIDC-AI/Ovis-Image)] [[model](https://huggingface.co/AIDC-AI/Ovis-Image-7B)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt here", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): img_height = gr.Slider( label="Image Height", minimum=256, maximum=2048, step=32, value=1024, ) img_width = gr.Slider( label="Image Width", minimum=256, maximum=2048, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=14, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=50, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) gr.Examples( examples = examples, fn = generate, inputs = [prompt], outputs = [result], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = generate, inputs = [prompt, img_height, img_width, seed, num_inference_steps, guidance_scale], outputs = [result] ) if __name__ == '__main__': demo.launch()