Spaces:
Running
on
Zero
Running
on
Zero
| import os.path | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer | |
| from importlib_resources import files | |
| from ldm.modules.encoders.CLAP.utils import read_config_as_args | |
| from ldm.modules.encoders.CLAP.clap import TextEncoder | |
| from ldm.util import count_params | |
| import numpy as np | |
| class Video_Feat_Encoder_NoPosembed(nn.Module): | |
| """ Transform the video feat encoder""" | |
| def __init__(self, origin_dim, embed_dim, seq_len=40): | |
| super().__init__() | |
| self.embedder = nn.Sequential(nn.Linear(origin_dim, embed_dim)) | |
| def forward(self, x): | |
| # Revise the shape here: | |
| x = self.embedder(x) # B x 117 x C | |
| return x | |
| class Video_Feat_Encoder_NoPosembed_inpaint(Video_Feat_Encoder_NoPosembed): | |
| """ Transform the video feat encoder""" | |
| def forward(self, x): | |
| # Revise the shape here: | |
| video, spec = x['mix_video_feat'], x['mix_spec'] | |
| video = self.embedder(video) # B x 117 x C | |
| return (video, spec) | |
| class AbstractEncoder(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def encode(self, *args, **kwargs): | |
| raise NotImplementedError | |
| def disabled_train(self, mode=True): | |
| """Overwrite model.train with this function to make sure train/eval mode | |
| does not change anymore.""" | |
| return self | |
| class FrozenFLANEmbedder(AbstractEncoder): | |
| """Uses the T5 transformer encoder for text""" | |
| def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, | |
| freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| super().__init__() | |
| self.tokenizer = T5Tokenizer.from_pretrained(version) | |
| self.transformer = T5EncoderModel.from_pretrained(version) | |
| self.device = device | |
| self.max_length = max_length # TODO: typical value? | |
| if freeze: | |
| self.freeze() | |
| def freeze(self): | |
| self.transformer = self.transformer.eval() | |
| # self.train = disabled_train | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.device) # tango的flanT5是不定长度的batch,这里做成定长的batch | |
| outputs = self.transformer(input_ids=tokens) | |
| z = outputs.last_hidden_state | |
| return z | |
| def encode(self, text): | |
| return self(text) | |
| class FrozenCLAPEmbedder(AbstractEncoder): | |
| """Uses the CLAP transformer encoder for text from microsoft""" | |
| def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| super().__init__() | |
| model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
| match_params = dict() | |
| for key in list(model_state_dict.keys()): | |
| if 'caption_encoder' in key: | |
| match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
| config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
| args = read_config_as_args(config_as_str, is_config_str=True) | |
| self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
| self.caption_encoder = TextEncoder( | |
| args.d_proj, args.text_model, args.transformer_embed_dim | |
| ) | |
| self.max_length = max_length | |
| self.device = device | |
| if freeze: self.freeze() | |
| print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
| def freeze(self): # only freeze | |
| self.caption_encoder.base = self.caption_encoder.base.eval() | |
| for param in self.caption_encoder.base.parameters(): | |
| param.requires_grad = False | |
| def encode(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.device) | |
| outputs = self.caption_encoder.base(input_ids=tokens) | |
| z = self.caption_encoder.projection(outputs.last_hidden_state) | |
| return z | |
| class FrozenCLAPFLANEmbedder(AbstractEncoder): | |
| """Uses the CLAP transformer encoder for text from microsoft""" | |
| def __init__(self, weights_path, t5version="google/t5-v1_1-large", freeze=True, device="cuda", | |
| max_length=77): # clip-vit-base-patch32 | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| super().__init__() | |
| model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
| match_params = dict() | |
| for key in list(model_state_dict.keys()): | |
| if 'caption_encoder' in key: | |
| match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
| config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
| args = read_config_as_args(config_as_str, is_config_str=True) | |
| self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
| self.caption_encoder = TextEncoder( | |
| args.d_proj, args.text_model, args.transformer_embed_dim | |
| ) | |
| self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version) | |
| self.t5_transformer = T5EncoderModel.from_pretrained(t5version) | |
| self.max_length = max_length | |
| self.to(device=device) | |
| if freeze: self.freeze() | |
| print( | |
| f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
| def freeze(self): | |
| self.caption_encoder = self.caption_encoder.eval() | |
| for param in self.caption_encoder.parameters(): | |
| param.requires_grad = False | |
| def to(self, device): | |
| self.t5_transformer.to(device) | |
| self.caption_encoder.to(device) | |
| self.device = device | |
| def encode(self, text): | |
| ori_caption = text['ori_caption'] | |
| struct_caption = text['struct_caption'] | |
| # print(ori_caption,struct_caption) | |
| clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, | |
| return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", | |
| return_tensors="pt") | |
| ori_tokens = clap_batch_encoding["input_ids"].to(self.device) | |
| t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, | |
| return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", | |
| return_tensors="pt") | |
| struct_tokens = t5_batch_encoding["input_ids"].to(self.device) | |
| outputs = self.caption_encoder.base(input_ids=ori_tokens) | |
| z = self.caption_encoder.projection(outputs.last_hidden_state) | |
| z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state | |
| return torch.concat([z, z2], dim=1) | |