Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import json | |
| import hashlib | |
| from datetime import datetime, timezone | |
| from pathlib import Path | |
| from typing import List | |
| import pandas as pd | |
| from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc | |
| from src.display.formatting import styled_message, styled_error | |
| from src.display.utils import COLS_QA, TYPES_QA, COLS_LONG_DOC, TYPES_LONG_DOC, COL_NAME_RANK, COL_NAME_AVG, \ | |
| COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_IS_ANONYMOUS, COL_NAME_TIMESTAMP, COL_NAME_REVISION, get_default_auto_eval_column_dict | |
| from src.envs import API, SEARCH_RESULTS_REPO | |
| from src.read_evals import FullEvalResult, get_leaderboard_df, calculate_mean | |
| import re | |
| def remove_html(input_str): | |
| # Regular expression for finding HTML tags | |
| clean = re.sub(r'<.*?>', '', input_str) | |
| return clean | |
| def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame: | |
| if not reranking_query: | |
| return df | |
| else: | |
| return df.loc[df[COL_NAME_RERANKING_MODEL].apply(remove_html).isin(reranking_query)] | |
| def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame: | |
| filtered_df = df.copy() | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[ | |
| COL_NAME_RETRIEVAL_MODEL, | |
| COL_NAME_RERANKING_MODEL, | |
| ] | |
| ) | |
| return filtered_df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))] | |
| def get_default_cols(task: str, columns: list=[], add_fix_cols: bool=True) -> list: | |
| cols = [] | |
| types = [] | |
| if task == "qa": | |
| cols_list = COLS_QA | |
| types_list = TYPES_QA | |
| benchmark_list = BENCHMARK_COLS_QA | |
| elif task == "long-doc": | |
| cols_list = COLS_LONG_DOC | |
| types_list = TYPES_LONG_DOC | |
| benchmark_list = BENCHMARK_COLS_LONG_DOC | |
| else: | |
| raise NotImplemented | |
| for col_name, col_type in zip(cols_list, types_list): | |
| if col_name not in benchmark_list: | |
| continue | |
| if len(columns) > 0 and col_name not in columns: | |
| continue | |
| cols.append(col_name) | |
| types.append(col_type) | |
| if add_fix_cols: | |
| _cols = [] | |
| _types = [] | |
| for col_name, col_type in zip(cols, types): | |
| if col_name in FIXED_COLS: | |
| continue | |
| _cols.append(col_name) | |
| _types.append(col_type) | |
| cols = FIXED_COLS + _cols | |
| types = FIXED_COLS_TYPES + _types | |
| return cols, types | |
| fixed_cols = get_default_auto_eval_column_dict()[:-3] | |
| FIXED_COLS = [c.name for _, _, c in fixed_cols] | |
| FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols] | |
| def select_columns( | |
| df: pd.DataFrame, | |
| domain_query: list, | |
| language_query: list, | |
| task: str = "qa", | |
| reset_ranking: bool = True | |
| ) -> pd.DataFrame: | |
| cols, _ = get_default_cols(task=task, columns=df.columns, add_fix_cols=False) | |
| selected_cols = [] | |
| for c in cols: | |
| if task == "qa": | |
| eval_col = BenchmarksQA[c].value | |
| elif task == "long-doc": | |
| eval_col = BenchmarksLongDoc[c].value | |
| if eval_col.domain not in domain_query: | |
| continue | |
| if eval_col.lang not in language_query: | |
| continue | |
| selected_cols.append(c) | |
| # We use COLS to maintain sorting | |
| filtered_df = df[FIXED_COLS + selected_cols] | |
| if reset_ranking: | |
| filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2) | |
| filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True) | |
| filtered_df.reset_index(inplace=True, drop=True) | |
| filtered_df = reset_rank(filtered_df) | |
| return filtered_df | |
| def _update_table( | |
| task: str, | |
| hidden_df: pd.DataFrame, | |
| domains: list, | |
| langs: list, | |
| reranking_query: list, | |
| query: str, | |
| show_anonymous: bool, | |
| reset_ranking: bool = True, | |
| show_revision_and_timestamp: bool = False | |
| ): | |
| filtered_df = hidden_df.copy() | |
| if not show_anonymous: | |
| filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]] | |
| filtered_df = filter_models(filtered_df, reranking_query) | |
| filtered_df = filter_queries(query, filtered_df) | |
| filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking) | |
| if not show_revision_and_timestamp: | |
| filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True) | |
| return filtered_df | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| domains: list, | |
| langs: list, | |
| reranking_query: list, | |
| query: str, | |
| show_anonymous: bool, | |
| show_revision_and_timestamp: bool = False, | |
| reset_ranking: bool = True | |
| ): | |
| return _update_table( | |
| "qa", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp) | |
| def update_table_long_doc( | |
| hidden_df: pd.DataFrame, | |
| domains: list, | |
| langs: list, | |
| reranking_query: list, | |
| query: str, | |
| show_anonymous: bool, | |
| show_revision_and_timestamp: bool = False, | |
| reset_ranking: bool = True | |
| ): | |
| return _update_table( | |
| "long-doc", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp) | |
| def update_metric( | |
| raw_data: List[FullEvalResult], | |
| task: str, | |
| metric: str, | |
| domains: list, | |
| langs: list, | |
| reranking_model: list, | |
| query: str, | |
| show_anonymous: bool = False, | |
| show_revision_and_timestamp: bool = False, | |
| ) -> pd.DataFrame: | |
| if task == 'qa': | |
| leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric) | |
| return update_table( | |
| leaderboard_df, | |
| domains, | |
| langs, | |
| reranking_model, | |
| query, | |
| show_anonymous, | |
| show_revision_and_timestamp | |
| ) | |
| elif task == "long-doc": | |
| leaderboard_df = get_leaderboard_df(raw_data, task=task, metric=metric) | |
| return update_table_long_doc( | |
| leaderboard_df, | |
| domains, | |
| langs, | |
| reranking_model, | |
| query, | |
| show_anonymous, | |
| show_revision_and_timestamp | |
| ) | |
| def upload_file(filepath: str): | |
| if not filepath.endswith(".zip"): | |
| print(f"file uploading aborted. wrong file type: {filepath}") | |
| return filepath | |
| return filepath | |
| def get_iso_format_timestamp(): | |
| # Get the current timestamp with UTC as the timezone | |
| current_timestamp = datetime.now(timezone.utc) | |
| # Remove milliseconds by setting microseconds to zero | |
| current_timestamp = current_timestamp.replace(microsecond=0) | |
| # Convert to ISO 8601 format and replace the offset with 'Z' | |
| iso_format_timestamp = current_timestamp.isoformat().replace('+00:00', 'Z') | |
| filename_friendly_timestamp = current_timestamp.strftime('%Y%m%d%H%M%S') | |
| return iso_format_timestamp, filename_friendly_timestamp | |
| def calculate_file_md5(file_path): | |
| md5 = hashlib.md5() | |
| with open(file_path, 'rb') as f: | |
| while True: | |
| data = f.read(4096) | |
| if not data: | |
| break | |
| md5.update(data) | |
| return md5.hexdigest() | |
| def submit_results( | |
| filepath: str, | |
| model: str, | |
| model_url: str, | |
| reranking_model: str="", | |
| reranking_model_url: str="", | |
| version: str="AIR-Bench_24.04", | |
| is_anonymous=False): | |
| if not filepath.endswith(".zip"): | |
| return styled_error(f"file uploading aborted. wrong file type: {filepath}") | |
| # validate model | |
| if not model: | |
| return styled_error("failed to submit. Model name can not be empty.") | |
| # validate model url | |
| if not is_anonymous: | |
| if not model_url.startswith("https://") and not model_url.startswith("http://"): | |
| # TODO: retrieve the model page and find the model name on the page | |
| return styled_error( | |
| f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}") | |
| if reranking_model != "NoReranker": | |
| if not reranking_model_url.startswith("https://") and not reranking_model_url.startswith("http://"): | |
| return styled_error( | |
| f"failed to submit. Model url must start with `https://` or `http://`. Illegal model url: {model_url}") | |
| # rename the uploaded file | |
| input_fp = Path(filepath) | |
| revision = calculate_file_md5(filepath) | |
| timestamp_config, timestamp_fn = get_iso_format_timestamp() | |
| output_fn = f"{timestamp_fn}-{revision}.zip" | |
| input_folder_path = input_fp.parent | |
| if not reranking_model: | |
| reranking_model = 'NoReranker' | |
| API.upload_file( | |
| path_or_fileobj=filepath, | |
| path_in_repo=f"{version}/{model}/{reranking_model}/{output_fn}", | |
| repo_id=SEARCH_RESULTS_REPO, | |
| repo_type="dataset", | |
| commit_message=f"feat: submit {model} to evaluate") | |
| output_config_fn = f"{output_fn.removesuffix('.zip')}.json" | |
| output_config = { | |
| "model_name": f"{model}", | |
| "model_url": f"{model_url}", | |
| "reranker_name": f"{reranking_model}", | |
| "reranker_url": f"{reranking_model_url}", | |
| "version": f"{version}", | |
| "is_anonymous": is_anonymous, | |
| "revision": f"{revision}", | |
| "timestamp": f"{timestamp_config}" | |
| } | |
| with open(input_folder_path / output_config_fn, "w") as f: | |
| json.dump(output_config, f, indent=4, ensure_ascii=False) | |
| API.upload_file( | |
| path_or_fileobj=input_folder_path / output_config_fn, | |
| path_in_repo=f"{version}/{model}/{reranking_model}/{output_config_fn}", | |
| repo_id=SEARCH_RESULTS_REPO, | |
| repo_type="dataset", | |
| commit_message=f"feat: submit {model} + {reranking_model} config") | |
| return styled_message( | |
| f"Thanks for submission!\n" | |
| f"Retrieval method: {model}\nReranking model: {reranking_model}\nSubmission revision: {revision}" | |
| ) | |
| def reset_rank(df): | |
| df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min") | |
| return df | |