Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Merge branch 'feat-add-versions-to-benchmarks-1015' into pr/28
Browse files- app.py +192 -113
- src/benchmarks.py +47 -62
- src/display/{utils.py → columns.py} +35 -31
- src/display/gradio_formatting.py +10 -3
- src/display/gradio_listener.py +0 -53
- src/envs.py +44 -1
- src/loaders.py +102 -0
- src/{read_evals.py → models.py} +15 -103
- src/utils.py +141 -49
- tests/src/display/test_utils.py +1 -4
- tests/src/test_benchmarks.py +10 -3
- tests/src/test_read_evals.py +6 -4
- tests/test_utils.py +4 -2
app.py
CHANGED
|
@@ -1,105 +1,63 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 3 |
-
from huggingface_hub import snapshot_download
|
| 4 |
|
| 5 |
from src.about import (
|
| 6 |
INTRODUCTION_TEXT,
|
| 7 |
-
|
| 8 |
-
TITLE,
|
| 9 |
-
EVALUATION_QUEUE_TEXT
|
| 10 |
)
|
| 11 |
from src.benchmarks import (
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
DOMAIN_COLS_LONG_DOC,
|
| 15 |
-
LANG_COLS_LONG_DOC,
|
| 16 |
-
METRIC_LIST,
|
| 17 |
-
DEFAULT_METRIC_QA,
|
| 18 |
-
DEFAULT_METRIC_LONG_DOC
|
| 19 |
)
|
| 20 |
from src.display.css_html_js import custom_css
|
| 21 |
-
from src.display.utils import (
|
| 22 |
-
COL_NAME_IS_ANONYMOUS,
|
| 23 |
-
COL_NAME_REVISION,
|
| 24 |
-
COL_NAME_TIMESTAMP,
|
| 25 |
-
COL_NAME_RERANKING_MODEL,
|
| 26 |
-
COL_NAME_RETRIEVAL_MODEL
|
| 27 |
-
)
|
| 28 |
from src.envs import (
|
| 29 |
API,
|
| 30 |
EVAL_RESULTS_PATH,
|
| 31 |
-
REPO_ID,
|
| 32 |
-
RESULTS_REPO,
|
| 33 |
-
TOKEN,
|
| 34 |
-
BM25_LINK,
|
| 35 |
-
BENCHMARK_VERSION_LIST,
|
| 36 |
-
LATEST_BENCHMARK_VERSION
|
| 37 |
)
|
| 38 |
-
from src.
|
| 39 |
-
|
| 40 |
-
get_leaderboard_df
|
| 41 |
)
|
| 42 |
from src.utils import (
|
| 43 |
update_metric,
|
| 44 |
-
|
| 45 |
-
get_default_cols,
|
| 46 |
-
submit_results,
|
| 47 |
reset_rank,
|
| 48 |
-
remove_html
|
| 49 |
)
|
| 50 |
from src.display.gradio_formatting import (
|
| 51 |
get_version_dropdown,
|
| 52 |
get_search_bar,
|
| 53 |
get_reranking_dropdown,
|
|
|
|
| 54 |
get_metric_dropdown,
|
| 55 |
get_domain_dropdown,
|
| 56 |
get_language_dropdown,
|
| 57 |
get_anonymous_checkbox,
|
| 58 |
get_revision_and_ts_checkbox,
|
| 59 |
-
get_leaderboard_table
|
| 60 |
-
get_noreranking_dropdown
|
| 61 |
)
|
| 62 |
-
from src.display.gradio_listener import set_listeners
|
| 63 |
-
|
| 64 |
-
def restart_space():
|
| 65 |
-
API.restart_space(repo_id=REPO_ID)
|
| 66 |
|
|
|
|
| 67 |
|
| 68 |
-
try:
|
| 69 |
-
snapshot_download(
|
| 70 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
| 71 |
-
token=TOKEN
|
| 72 |
-
)
|
| 73 |
-
except Exception as e:
|
| 74 |
-
print(f'failed to download')
|
| 75 |
-
restart_space()
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
original_df_qa = get_leaderboard_df(
|
| 80 |
-
raw_data, task='qa', metric=DEFAULT_METRIC_QA)
|
| 81 |
-
original_df_long_doc = get_leaderboard_df(
|
| 82 |
-
raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
|
| 83 |
-
print(f'raw data: {len(raw_data)}')
|
| 84 |
-
print(f'QA data loaded: {original_df_qa.shape}')
|
| 85 |
-
print(f'Long-Doc data loaded: {len(original_df_long_doc)}')
|
| 86 |
-
|
| 87 |
-
leaderboard_df_qa = original_df_qa.copy()
|
| 88 |
-
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
|
| 89 |
-
shown_columns_qa, types_qa = get_default_cols(
|
| 90 |
-
'qa', leaderboard_df_qa.columns, add_fix_cols=True)
|
| 91 |
-
leaderboard_df_qa = leaderboard_df_qa[~leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
|
| 92 |
-
leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
| 93 |
|
| 94 |
-
leaderboard_df_long_doc = original_df_long_doc.copy()
|
| 95 |
-
shown_columns_long_doc, types_long_doc = get_default_cols(
|
| 96 |
-
'long-doc', leaderboard_df_long_doc.columns, add_fix_cols=True)
|
| 97 |
-
leaderboard_df_long_doc = leaderboard_df_long_doc[~leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][shown_columns_long_doc]
|
| 98 |
-
leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def update_metric_qa(
|
| 105 |
metric: str,
|
|
@@ -108,9 +66,10 @@ def update_metric_qa(
|
|
| 108 |
reranking_model: list,
|
| 109 |
query: str,
|
| 110 |
show_anonymous: bool,
|
| 111 |
-
show_revision_and_timestamp,
|
| 112 |
):
|
| 113 |
-
return update_metric(
|
|
|
|
| 114 |
|
| 115 |
def update_metric_long_doc(
|
| 116 |
metric: str,
|
|
@@ -121,7 +80,37 @@ def update_metric_long_doc(
|
|
| 121 |
show_anonymous: bool,
|
| 122 |
show_revision_and_timestamp,
|
| 123 |
):
|
| 124 |
-
return update_metric(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
|
| 127 |
demo = gr.Blocks(css=custom_css)
|
|
@@ -140,11 +129,10 @@ with demo:
|
|
| 140 |
with gr.Column(min_width=320):
|
| 141 |
# select domain
|
| 142 |
with gr.Row():
|
| 143 |
-
selected_domains = get_domain_dropdown(
|
| 144 |
# select language
|
| 145 |
with gr.Row():
|
| 146 |
-
selected_langs = get_language_dropdown(
|
| 147 |
-
|
| 148 |
with gr.Column():
|
| 149 |
# select the metric
|
| 150 |
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA)
|
|
@@ -160,16 +148,26 @@ with demo:
|
|
| 160 |
search_bar = get_search_bar()
|
| 161 |
# select reranking models
|
| 162 |
with gr.Column():
|
| 163 |
-
selected_rerankings = get_reranking_dropdown(reranking_models)
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
set_listeners(
|
| 169 |
"qa",
|
| 170 |
-
|
| 171 |
-
|
| 172 |
search_bar,
|
|
|
|
| 173 |
selected_domains,
|
| 174 |
selected_langs,
|
| 175 |
selected_rerankings,
|
|
@@ -189,28 +187,45 @@ with demo:
|
|
| 189 |
show_anonymous,
|
| 190 |
show_revision_and_timestamp,
|
| 191 |
],
|
| 192 |
-
|
| 193 |
queue=True
|
| 194 |
)
|
|
|
|
| 195 |
with gr.TabItem("Retrieval Only", id=11):
|
| 196 |
with gr.Row():
|
| 197 |
with gr.Column(scale=1):
|
| 198 |
search_bar_retriever = get_search_bar()
|
| 199 |
with gr.Column(scale=1):
|
| 200 |
selected_noreranker = get_noreranking_dropdown()
|
| 201 |
-
|
|
|
|
| 202 |
lb_df_retriever = reset_rank(lb_df_retriever)
|
| 203 |
-
lb_table_retriever = get_leaderboard_table(
|
|
|
|
|
|
|
| 204 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 205 |
-
hidden_lb_df_retriever =
|
| 206 |
hidden_lb_df_retriever = reset_rank(hidden_lb_df_retriever)
|
| 207 |
-
hidden_lb_table_retriever = get_leaderboard_table(hidden_lb_df_retriever, types_qa, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
set_listeners(
|
| 210 |
"qa",
|
| 211 |
lb_table_retriever,
|
| 212 |
hidden_lb_table_retriever,
|
| 213 |
search_bar_retriever,
|
|
|
|
| 214 |
selected_domains,
|
| 215 |
selected_langs,
|
| 216 |
selected_noreranker,
|
|
@@ -234,7 +249,12 @@ with demo:
|
|
| 234 |
queue=True
|
| 235 |
)
|
| 236 |
with gr.TabItem("Reranking Only", id=12):
|
| 237 |
-
lb_df_reranker =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
lb_df_reranker = reset_rank(lb_df_reranker)
|
| 239 |
reranking_models_reranker = lb_df_reranker[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
|
| 240 |
with gr.Row():
|
|
@@ -242,11 +262,26 @@ with demo:
|
|
| 242 |
selected_rerankings_reranker = get_reranking_dropdown(reranking_models_reranker)
|
| 243 |
with gr.Column(scale=1):
|
| 244 |
search_bar_reranker = gr.Textbox(show_label=False, visible=False)
|
| 245 |
-
lb_table_reranker = get_leaderboard_table(
|
| 246 |
-
|
|
|
|
|
|
|
| 247 |
hidden_lb_df_reranker = reset_rank(hidden_lb_df_reranker)
|
| 248 |
hidden_lb_table_reranker = get_leaderboard_table(
|
| 249 |
-
hidden_lb_df_reranker,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
)
|
| 251 |
|
| 252 |
set_listeners(
|
|
@@ -254,6 +289,7 @@ with demo:
|
|
| 254 |
lb_table_reranker,
|
| 255 |
hidden_lb_table_reranker,
|
| 256 |
search_bar_reranker,
|
|
|
|
| 257 |
selected_domains,
|
| 258 |
selected_langs,
|
| 259 |
selected_rerankings_reranker,
|
|
@@ -280,12 +316,10 @@ with demo:
|
|
| 280 |
with gr.Column(min_width=320):
|
| 281 |
# select domain
|
| 282 |
with gr.Row():
|
| 283 |
-
selected_domains = get_domain_dropdown(
|
| 284 |
# select language
|
| 285 |
with gr.Row():
|
| 286 |
-
selected_langs = get_language_dropdown(
|
| 287 |
-
LANG_COLS_LONG_DOC, LANG_COLS_LONG_DOC
|
| 288 |
-
)
|
| 289 |
with gr.Column():
|
| 290 |
# select the metric
|
| 291 |
with gr.Row():
|
|
@@ -301,22 +335,35 @@ with demo:
|
|
| 301 |
search_bar = get_search_bar()
|
| 302 |
# select reranking model
|
| 303 |
with gr.Column():
|
| 304 |
-
selected_rerankings = get_reranking_dropdown(reranking_models)
|
| 305 |
|
| 306 |
-
|
| 307 |
-
leaderboard_df_long_doc, types_long_doc
|
| 308 |
)
|
| 309 |
|
| 310 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
)
|
| 314 |
|
| 315 |
set_listeners(
|
| 316 |
"long-doc",
|
| 317 |
-
|
| 318 |
-
|
| 319 |
search_bar,
|
|
|
|
| 320 |
selected_domains,
|
| 321 |
selected_langs,
|
| 322 |
selected_rerankings,
|
|
@@ -336,7 +383,7 @@ with demo:
|
|
| 336 |
show_anonymous,
|
| 337 |
show_revision_and_timestamp
|
| 338 |
],
|
| 339 |
-
|
| 340 |
queue=True
|
| 341 |
)
|
| 342 |
with gr.TabItem("Retrieval Only", id=21):
|
|
@@ -345,18 +392,31 @@ with demo:
|
|
| 345 |
search_bar_retriever = get_search_bar()
|
| 346 |
with gr.Column(scale=1):
|
| 347 |
selected_noreranker = get_noreranking_dropdown()
|
| 348 |
-
lb_df_retriever_long_doc = leaderboard_df_long_doc[
|
| 349 |
-
leaderboard_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
|
| 350 |
]
|
| 351 |
lb_df_retriever_long_doc = reset_rank(lb_df_retriever_long_doc)
|
| 352 |
-
hidden_lb_db_retriever_long_doc = original_df_long_doc[
|
| 353 |
-
original_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
|
| 354 |
-
]
|
| 355 |
-
hidden_lb_db_retriever_long_doc = reset_rank(hidden_lb_db_retriever_long_doc)
|
| 356 |
lb_table_retriever_long_doc = get_leaderboard_table(
|
| 357 |
-
lb_df_retriever_long_doc, types_long_doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
hidden_lb_table_retriever_long_doc = get_leaderboard_table(
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
)
|
| 361 |
|
| 362 |
set_listeners(
|
|
@@ -364,6 +424,7 @@ with demo:
|
|
| 364 |
lb_table_retriever_long_doc,
|
| 365 |
hidden_lb_table_retriever_long_doc,
|
| 366 |
search_bar_retriever,
|
|
|
|
| 367 |
selected_domains,
|
| 368 |
selected_langs,
|
| 369 |
selected_noreranker,
|
|
@@ -386,8 +447,11 @@ with demo:
|
|
| 386 |
queue=True
|
| 387 |
)
|
| 388 |
with gr.TabItem("Reranking Only", id=22):
|
| 389 |
-
lb_df_reranker_ldoc =
|
| 390 |
-
leaderboard_df_long_doc[
|
|
|
|
|
|
|
|
|
|
| 391 |
]
|
| 392 |
lb_df_reranker_ldoc = reset_rank(lb_df_reranker_ldoc)
|
| 393 |
reranking_models_reranker_ldoc = lb_df_reranker_ldoc[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
|
|
@@ -396,11 +460,23 @@ with demo:
|
|
| 396 |
selected_rerankings_reranker_ldoc = get_reranking_dropdown(reranking_models_reranker_ldoc)
|
| 397 |
with gr.Column(scale=1):
|
| 398 |
search_bar_reranker_ldoc = gr.Textbox(show_label=False, visible=False)
|
| 399 |
-
lb_table_reranker_ldoc = get_leaderboard_table(lb_df_reranker_ldoc, types_long_doc)
|
| 400 |
-
hidden_lb_df_reranker_ldoc =
|
| 401 |
hidden_lb_df_reranker_ldoc = reset_rank(hidden_lb_df_reranker_ldoc)
|
| 402 |
hidden_lb_table_reranker_ldoc = get_leaderboard_table(
|
| 403 |
-
hidden_lb_df_reranker_ldoc, types_long_doc, visible=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
)
|
| 405 |
|
| 406 |
set_listeners(
|
|
@@ -408,6 +484,7 @@ with demo:
|
|
| 408 |
lb_table_reranker_ldoc,
|
| 409 |
hidden_lb_table_reranker_ldoc,
|
| 410 |
search_bar_reranker_ldoc,
|
|
|
|
| 411 |
selected_domains,
|
| 412 |
selected_langs,
|
| 413 |
selected_rerankings_reranker_ldoc,
|
|
@@ -503,3 +580,5 @@ if __name__ == "__main__":
|
|
| 503 |
scheduler.start()
|
| 504 |
demo.queue(default_concurrency_limit=40)
|
| 505 |
demo.launch()
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
|
| 4 |
|
| 5 |
from src.about import (
|
| 6 |
INTRODUCTION_TEXT,
|
| 7 |
+
TITLE
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
from src.benchmarks import (
|
| 10 |
+
QABenchmarks,
|
| 11 |
+
LongDocBenchmarks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
from src.display.css_html_js import custom_css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from src.envs import (
|
| 15 |
API,
|
| 16 |
EVAL_RESULTS_PATH,
|
| 17 |
+
REPO_ID, DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC, METRIC_LIST, LATEST_BENCHMARK_VERSION, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, BM25_LINK, BENCHMARK_VERSION_LIST
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
+
from src.loaders import (
|
| 20 |
+
load_eval_results
|
|
|
|
| 21 |
)
|
| 22 |
from src.utils import (
|
| 23 |
update_metric,
|
| 24 |
+
set_listeners,
|
|
|
|
|
|
|
| 25 |
reset_rank,
|
| 26 |
+
remove_html, upload_file, submit_results
|
| 27 |
)
|
| 28 |
from src.display.gradio_formatting import (
|
| 29 |
get_version_dropdown,
|
| 30 |
get_search_bar,
|
| 31 |
get_reranking_dropdown,
|
| 32 |
+
get_noreranking_dropdown,
|
| 33 |
get_metric_dropdown,
|
| 34 |
get_domain_dropdown,
|
| 35 |
get_language_dropdown,
|
| 36 |
get_anonymous_checkbox,
|
| 37 |
get_revision_and_ts_checkbox,
|
| 38 |
+
get_leaderboard_table
|
|
|
|
| 39 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
from src.about import EVALUATION_QUEUE_TEXT, BENCHMARKS_TEXT
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
def restart_space():
|
| 45 |
+
API.restart_space(repo_id=REPO_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# try:
|
| 49 |
+
# snapshot_download(
|
| 50 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
| 51 |
+
# token=TOKEN
|
| 52 |
+
# )
|
| 53 |
+
# except Exception as e:
|
| 54 |
+
# print(f'failed to download')
|
| 55 |
+
# restart_space()
|
| 56 |
|
| 57 |
+
global data
|
| 58 |
+
data = load_eval_results(EVAL_RESULTS_PATH)
|
| 59 |
+
global datastore
|
| 60 |
+
datastore = data[LATEST_BENCHMARK_VERSION]
|
| 61 |
|
| 62 |
def update_metric_qa(
|
| 63 |
metric: str,
|
|
|
|
| 66 |
reranking_model: list,
|
| 67 |
query: str,
|
| 68 |
show_anonymous: bool,
|
| 69 |
+
show_revision_and_timestamp: bool,
|
| 70 |
):
|
| 71 |
+
return update_metric(datastore, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
|
| 72 |
+
|
| 73 |
|
| 74 |
def update_metric_long_doc(
|
| 75 |
metric: str,
|
|
|
|
| 80 |
show_anonymous: bool,
|
| 81 |
show_revision_and_timestamp,
|
| 82 |
):
|
| 83 |
+
return update_metric(datastore, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def update_datastore(version):
|
| 87 |
+
print("triggered update_datastore")
|
| 88 |
+
global datastore
|
| 89 |
+
global data
|
| 90 |
+
datastore = data[version]
|
| 91 |
+
selected_domains = get_domain_dropdown(QABenchmarks[datastore.slug])
|
| 92 |
+
selected_langs = get_language_dropdown(QABenchmarks[datastore.slug])
|
| 93 |
+
selected_rerankings = get_reranking_dropdown(datastore.reranking_models)
|
| 94 |
+
leaderboard_table = get_leaderboard_table(
|
| 95 |
+
datastore.leaderboard_df_qa, datastore.types_qa)
|
| 96 |
+
hidden_leaderboard_table = get_leaderboard_table(
|
| 97 |
+
datastore.raw_df_qa, datastore.types_qa, visible=False)
|
| 98 |
+
return selected_domains, selected_langs, selected_rerankings, leaderboard_table, hidden_leaderboard_table
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def update_datastore_long_doc(version):
|
| 102 |
+
global datastore
|
| 103 |
+
global data
|
| 104 |
+
print("triggered update_datastore_long_doc")
|
| 105 |
+
datastore = data[version]
|
| 106 |
+
selected_domains = get_domain_dropdown(LongDocBenchmarks[datastore.slug])
|
| 107 |
+
selected_langs = get_language_dropdown(LongDocBenchmarks[datastore.slug])
|
| 108 |
+
selected_rerankings = get_reranking_dropdown(datastore.reranking_models)
|
| 109 |
+
leaderboard_table = get_leaderboard_table(
|
| 110 |
+
datastore.leaderboard_df_long_doc, datastore.types_long_doc)
|
| 111 |
+
hidden_leaderboard_table = get_leaderboard_table(
|
| 112 |
+
datastore.raw_df_long_doc, datastore.types_long_doc, visible=False)
|
| 113 |
+
return selected_domains, selected_langs, selected_rerankings, leaderboard_table, hidden_leaderboard_table
|
| 114 |
|
| 115 |
|
| 116 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 129 |
with gr.Column(min_width=320):
|
| 130 |
# select domain
|
| 131 |
with gr.Row():
|
| 132 |
+
selected_domains = get_domain_dropdown(QABenchmarks[datastore.slug])
|
| 133 |
# select language
|
| 134 |
with gr.Row():
|
| 135 |
+
selected_langs = get_language_dropdown(QABenchmarks[datastore.slug])
|
|
|
|
| 136 |
with gr.Column():
|
| 137 |
# select the metric
|
| 138 |
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA)
|
|
|
|
| 148 |
search_bar = get_search_bar()
|
| 149 |
# select reranking models
|
| 150 |
with gr.Column():
|
| 151 |
+
selected_rerankings = get_reranking_dropdown(datastore.reranking_models)
|
| 152 |
+
# shown_table
|
| 153 |
+
lb_table = get_leaderboard_table(
|
| 154 |
+
datastore.leaderboard_df_qa, datastore.types_qa)
|
| 155 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 156 |
+
hidden_lb_table = get_leaderboard_table(
|
| 157 |
+
datastore.raw_df_qa, datastore.types_qa, visible=False)
|
| 158 |
+
|
| 159 |
+
selected_version.change(
|
| 160 |
+
update_datastore,
|
| 161 |
+
[selected_version,],
|
| 162 |
+
[selected_domains, selected_langs, selected_rerankings, lb_table, hidden_lb_table]
|
| 163 |
+
)
|
| 164 |
|
| 165 |
set_listeners(
|
| 166 |
"qa",
|
| 167 |
+
lb_table,
|
| 168 |
+
hidden_lb_table,
|
| 169 |
search_bar,
|
| 170 |
+
selected_version,
|
| 171 |
selected_domains,
|
| 172 |
selected_langs,
|
| 173 |
selected_rerankings,
|
|
|
|
| 187 |
show_anonymous,
|
| 188 |
show_revision_and_timestamp,
|
| 189 |
],
|
| 190 |
+
lb_table,
|
| 191 |
queue=True
|
| 192 |
)
|
| 193 |
+
|
| 194 |
with gr.TabItem("Retrieval Only", id=11):
|
| 195 |
with gr.Row():
|
| 196 |
with gr.Column(scale=1):
|
| 197 |
search_bar_retriever = get_search_bar()
|
| 198 |
with gr.Column(scale=1):
|
| 199 |
selected_noreranker = get_noreranking_dropdown()
|
| 200 |
+
|
| 201 |
+
lb_df_retriever = datastore.leaderboard_df_qa[datastore.leaderboard_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
|
| 202 |
lb_df_retriever = reset_rank(lb_df_retriever)
|
| 203 |
+
lb_table_retriever = get_leaderboard_table(
|
| 204 |
+
lb_df_retriever, datastore.types_qa)
|
| 205 |
+
|
| 206 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 207 |
+
hidden_lb_df_retriever = datastore.raw_df_qa[datastore.raw_df_qa[COL_NAME_RERANKING_MODEL] == "NoReranker"]
|
| 208 |
hidden_lb_df_retriever = reset_rank(hidden_lb_df_retriever)
|
| 209 |
+
hidden_lb_table_retriever = get_leaderboard_table(hidden_lb_df_retriever, datastore.types_qa, visible=False)
|
| 210 |
+
|
| 211 |
+
selected_version.change(
|
| 212 |
+
update_datastore,
|
| 213 |
+
[selected_version,],
|
| 214 |
+
[
|
| 215 |
+
selected_domains,
|
| 216 |
+
selected_langs,
|
| 217 |
+
selected_noreranker,
|
| 218 |
+
lb_table_retriever,
|
| 219 |
+
hidden_lb_table_retriever
|
| 220 |
+
]
|
| 221 |
+
)
|
| 222 |
|
| 223 |
set_listeners(
|
| 224 |
"qa",
|
| 225 |
lb_table_retriever,
|
| 226 |
hidden_lb_table_retriever,
|
| 227 |
search_bar_retriever,
|
| 228 |
+
selected_version,
|
| 229 |
selected_domains,
|
| 230 |
selected_langs,
|
| 231 |
selected_noreranker,
|
|
|
|
| 249 |
queue=True
|
| 250 |
)
|
| 251 |
with gr.TabItem("Reranking Only", id=12):
|
| 252 |
+
lb_df_reranker = \
|
| 253 |
+
datastore.leaderboard_df_qa[
|
| 254 |
+
datastore.leaderboard_df_qa[
|
| 255 |
+
COL_NAME_RETRIEVAL_MODEL
|
| 256 |
+
] == BM25_LINK
|
| 257 |
+
]
|
| 258 |
lb_df_reranker = reset_rank(lb_df_reranker)
|
| 259 |
reranking_models_reranker = lb_df_reranker[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
|
| 260 |
with gr.Row():
|
|
|
|
| 262 |
selected_rerankings_reranker = get_reranking_dropdown(reranking_models_reranker)
|
| 263 |
with gr.Column(scale=1):
|
| 264 |
search_bar_reranker = gr.Textbox(show_label=False, visible=False)
|
| 265 |
+
lb_table_reranker = get_leaderboard_table(
|
| 266 |
+
lb_df_reranker, datastore.types_qa)
|
| 267 |
+
|
| 268 |
+
hidden_lb_df_reranker = datastore.raw_df_qa[datastore.raw_df_qa[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
|
| 269 |
hidden_lb_df_reranker = reset_rank(hidden_lb_df_reranker)
|
| 270 |
hidden_lb_table_reranker = get_leaderboard_table(
|
| 271 |
+
hidden_lb_df_reranker,
|
| 272 |
+
datastore.types_qa, visible=False
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
selected_version.change(
|
| 276 |
+
update_datastore,
|
| 277 |
+
[selected_version,],
|
| 278 |
+
[
|
| 279 |
+
selected_domains,
|
| 280 |
+
selected_langs,
|
| 281 |
+
selected_rerankings_reranker,
|
| 282 |
+
lb_table_reranker,
|
| 283 |
+
hidden_lb_table_reranker
|
| 284 |
+
]
|
| 285 |
)
|
| 286 |
|
| 287 |
set_listeners(
|
|
|
|
| 289 |
lb_table_reranker,
|
| 290 |
hidden_lb_table_reranker,
|
| 291 |
search_bar_reranker,
|
| 292 |
+
selected_version,
|
| 293 |
selected_domains,
|
| 294 |
selected_langs,
|
| 295 |
selected_rerankings_reranker,
|
|
|
|
| 316 |
with gr.Column(min_width=320):
|
| 317 |
# select domain
|
| 318 |
with gr.Row():
|
| 319 |
+
selected_domains = get_domain_dropdown(LongDocBenchmarks[datastore.slug])
|
| 320 |
# select language
|
| 321 |
with gr.Row():
|
| 322 |
+
selected_langs = get_language_dropdown(LongDocBenchmarks[datastore.slug])
|
|
|
|
|
|
|
| 323 |
with gr.Column():
|
| 324 |
# select the metric
|
| 325 |
with gr.Row():
|
|
|
|
| 335 |
search_bar = get_search_bar()
|
| 336 |
# select reranking model
|
| 337 |
with gr.Column():
|
| 338 |
+
selected_rerankings = get_reranking_dropdown(datastore.reranking_models)
|
| 339 |
|
| 340 |
+
lb_table_long_doc = get_leaderboard_table(
|
| 341 |
+
datastore.leaderboard_df_long_doc, datastore.types_long_doc
|
| 342 |
)
|
| 343 |
|
| 344 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 345 |
+
hidden_lb_table_long_doc = get_leaderboard_table(
|
| 346 |
+
datastore.raw_df_long_doc, datastore.types_long_doc, visible=False
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
selected_version.change(
|
| 350 |
+
update_datastore_long_doc,
|
| 351 |
+
[selected_version,],
|
| 352 |
+
[
|
| 353 |
+
selected_domains,
|
| 354 |
+
selected_langs,
|
| 355 |
+
selected_rerankings,
|
| 356 |
+
lb_table_long_doc,
|
| 357 |
+
hidden_lb_table_long_doc
|
| 358 |
+
]
|
| 359 |
)
|
| 360 |
|
| 361 |
set_listeners(
|
| 362 |
"long-doc",
|
| 363 |
+
lb_table_long_doc,
|
| 364 |
+
hidden_lb_table_long_doc,
|
| 365 |
search_bar,
|
| 366 |
+
selected_version,
|
| 367 |
selected_domains,
|
| 368 |
selected_langs,
|
| 369 |
selected_rerankings,
|
|
|
|
| 383 |
show_anonymous,
|
| 384 |
show_revision_and_timestamp
|
| 385 |
],
|
| 386 |
+
lb_table_long_doc,
|
| 387 |
queue=True
|
| 388 |
)
|
| 389 |
with gr.TabItem("Retrieval Only", id=21):
|
|
|
|
| 392 |
search_bar_retriever = get_search_bar()
|
| 393 |
with gr.Column(scale=1):
|
| 394 |
selected_noreranker = get_noreranking_dropdown()
|
| 395 |
+
lb_df_retriever_long_doc = datastore.leaderboard_df_long_doc[
|
| 396 |
+
datastore.leaderboard_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
|
| 397 |
]
|
| 398 |
lb_df_retriever_long_doc = reset_rank(lb_df_retriever_long_doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
lb_table_retriever_long_doc = get_leaderboard_table(
|
| 400 |
+
lb_df_retriever_long_doc, datastore.types_long_doc)
|
| 401 |
+
|
| 402 |
+
hidden_lb_df_retriever_long_doc = datastore.raw_df_long_doc[
|
| 403 |
+
datastore.raw_df_long_doc[COL_NAME_RERANKING_MODEL] == "NoReranker"
|
| 404 |
+
]
|
| 405 |
+
hidden_lb_df_retriever_long_doc = reset_rank(hidden_lb_df_retriever_long_doc)
|
| 406 |
hidden_lb_table_retriever_long_doc = get_leaderboard_table(
|
| 407 |
+
hidden_lb_df_retriever_long_doc, datastore.types_long_doc, visible=False
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
selected_version.change(
|
| 411 |
+
update_datastore_long_doc,
|
| 412 |
+
[selected_version,],
|
| 413 |
+
[
|
| 414 |
+
selected_domains,
|
| 415 |
+
selected_langs,
|
| 416 |
+
selected_noreranker,
|
| 417 |
+
lb_table_retriever_long_doc,
|
| 418 |
+
hidden_lb_table_retriever_long_doc
|
| 419 |
+
]
|
| 420 |
)
|
| 421 |
|
| 422 |
set_listeners(
|
|
|
|
| 424 |
lb_table_retriever_long_doc,
|
| 425 |
hidden_lb_table_retriever_long_doc,
|
| 426 |
search_bar_retriever,
|
| 427 |
+
selected_version,
|
| 428 |
selected_domains,
|
| 429 |
selected_langs,
|
| 430 |
selected_noreranker,
|
|
|
|
| 447 |
queue=True
|
| 448 |
)
|
| 449 |
with gr.TabItem("Reranking Only", id=22):
|
| 450 |
+
lb_df_reranker_ldoc = \
|
| 451 |
+
datastore.leaderboard_df_long_doc[
|
| 452 |
+
datastore.leaderboard_df_long_doc[
|
| 453 |
+
COL_NAME_RETRIEVAL_MODEL
|
| 454 |
+
] == BM25_LINK
|
| 455 |
]
|
| 456 |
lb_df_reranker_ldoc = reset_rank(lb_df_reranker_ldoc)
|
| 457 |
reranking_models_reranker_ldoc = lb_df_reranker_ldoc[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist()
|
|
|
|
| 460 |
selected_rerankings_reranker_ldoc = get_reranking_dropdown(reranking_models_reranker_ldoc)
|
| 461 |
with gr.Column(scale=1):
|
| 462 |
search_bar_reranker_ldoc = gr.Textbox(show_label=False, visible=False)
|
| 463 |
+
lb_table_reranker_ldoc = get_leaderboard_table(lb_df_reranker_ldoc, datastore.types_long_doc)
|
| 464 |
+
hidden_lb_df_reranker_ldoc = datastore.raw_df_long_doc[datastore.raw_df_long_doc[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK]
|
| 465 |
hidden_lb_df_reranker_ldoc = reset_rank(hidden_lb_df_reranker_ldoc)
|
| 466 |
hidden_lb_table_reranker_ldoc = get_leaderboard_table(
|
| 467 |
+
hidden_lb_df_reranker_ldoc, datastore.types_long_doc, visible=False
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
selected_version.change(
|
| 471 |
+
update_datastore_long_doc,
|
| 472 |
+
[selected_version,],
|
| 473 |
+
[
|
| 474 |
+
selected_domains,
|
| 475 |
+
selected_langs,
|
| 476 |
+
selected_rerankings_reranker_ldoc,
|
| 477 |
+
lb_table_reranker_ldoc,
|
| 478 |
+
hidden_lb_table_reranker_ldoc
|
| 479 |
+
]
|
| 480 |
)
|
| 481 |
|
| 482 |
set_listeners(
|
|
|
|
| 484 |
lb_table_reranker_ldoc,
|
| 485 |
hidden_lb_table_reranker_ldoc,
|
| 486 |
search_bar_reranker_ldoc,
|
| 487 |
+
selected_version,
|
| 488 |
selected_domains,
|
| 489 |
selected_langs,
|
| 490 |
selected_rerankings_reranker_ldoc,
|
|
|
|
| 580 |
scheduler.start()
|
| 581 |
demo.queue(default_concurrency_limit=40)
|
| 582 |
demo.launch()
|
| 583 |
+
|
| 584 |
+
|
src/benchmarks.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
|
|
|
| 3 |
from air_benchmark.tasks.tasks import BenchmarkTable
|
| 4 |
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def get_safe_name(name: str):
|
| 7 |
"""Get RFC 1123 compatible safe name"""
|
|
@@ -12,40 +15,6 @@ def get_safe_name(name: str):
|
|
| 12 |
if (character.isalnum() or character == '_'))
|
| 13 |
|
| 14 |
|
| 15 |
-
METRIC_LIST = [
|
| 16 |
-
"ndcg_at_1",
|
| 17 |
-
"ndcg_at_3",
|
| 18 |
-
"ndcg_at_5",
|
| 19 |
-
"ndcg_at_10",
|
| 20 |
-
"ndcg_at_100",
|
| 21 |
-
"ndcg_at_1000",
|
| 22 |
-
"map_at_1",
|
| 23 |
-
"map_at_3",
|
| 24 |
-
"map_at_5",
|
| 25 |
-
"map_at_10",
|
| 26 |
-
"map_at_100",
|
| 27 |
-
"map_at_1000",
|
| 28 |
-
"recall_at_1",
|
| 29 |
-
"recall_at_3",
|
| 30 |
-
"recall_at_5",
|
| 31 |
-
"recall_at_10",
|
| 32 |
-
"recall_at_100",
|
| 33 |
-
"recall_at_1000",
|
| 34 |
-
"precision_at_1",
|
| 35 |
-
"precision_at_3",
|
| 36 |
-
"precision_at_5",
|
| 37 |
-
"precision_at_10",
|
| 38 |
-
"precision_at_100",
|
| 39 |
-
"precision_at_1000",
|
| 40 |
-
"mrr_at_1",
|
| 41 |
-
"mrr_at_3",
|
| 42 |
-
"mrr_at_5",
|
| 43 |
-
"mrr_at_10",
|
| 44 |
-
"mrr_at_100",
|
| 45 |
-
"mrr_at_1000"
|
| 46 |
-
]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
@dataclass
|
| 50 |
class Benchmark:
|
| 51 |
name: str # [domain]_[language]_[metric], task_key in the json file,
|
|
@@ -56,37 +25,53 @@ class Benchmark:
|
|
| 56 |
task: str
|
| 57 |
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
for
|
| 64 |
-
if task
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
qa_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task)
|
| 70 |
-
elif task == "long-doc":
|
| 71 |
-
for dataset in dataset_list:
|
| 72 |
-
benchmark_name = f"{domain}_{lang}_{dataset}"
|
| 73 |
-
benchmark_name = get_safe_name(benchmark_name)
|
| 74 |
col_name = benchmark_name
|
| 75 |
-
for metric in
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
BenchmarksQA = Enum('BenchmarksQA', qa_benchmark_dict)
|
| 80 |
-
BenchmarksLongDoc = Enum('BenchmarksLongDoc', long_doc_benchmark_dict)
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
+
|
| 4 |
from air_benchmark.tasks.tasks import BenchmarkTable
|
| 5 |
|
| 6 |
+
from src.envs import METRIC_LIST
|
| 7 |
+
|
| 8 |
|
| 9 |
def get_safe_name(name: str):
|
| 10 |
"""Get RFC 1123 compatible safe name"""
|
|
|
|
| 15 |
if (character.isalnum() or character == '_'))
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@dataclass
|
| 19 |
class Benchmark:
|
| 20 |
name: str # [domain]_[language]_[metric], task_key in the json file,
|
|
|
|
| 25 |
task: str
|
| 26 |
|
| 27 |
|
| 28 |
+
# create a function return an enum class containing all the benchmarks
|
| 29 |
+
def get_benchmarks_enum(benchmark_version, task_type):
|
| 30 |
+
benchmark_dict = {}
|
| 31 |
+
if task_type == "qa":
|
| 32 |
+
for task, domain_dict in BenchmarkTable[benchmark_version].items():
|
| 33 |
+
if task != task_type:
|
| 34 |
+
continue
|
| 35 |
+
for domain, lang_dict in domain_dict.items():
|
| 36 |
+
for lang, dataset_list in lang_dict.items():
|
| 37 |
+
benchmark_name = get_safe_name(f"{domain}_{lang}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
col_name = benchmark_name
|
| 39 |
+
for metric in dataset_list:
|
| 40 |
+
if "test" not in dataset_list[metric]["splits"]:
|
| 41 |
+
continue
|
| 42 |
+
benchmark_dict[benchmark_name] = \
|
| 43 |
+
Benchmark(benchmark_name, metric, col_name, domain, lang, task)
|
| 44 |
+
elif task_type == "long-doc":
|
| 45 |
+
for task, domain_dict in BenchmarkTable[benchmark_version].items():
|
| 46 |
+
if task != task_type:
|
| 47 |
+
continue
|
| 48 |
+
for domain, lang_dict in domain_dict.items():
|
| 49 |
+
for lang, dataset_list in lang_dict.items():
|
| 50 |
+
for dataset in dataset_list:
|
| 51 |
+
benchmark_name = f"{domain}_{lang}_{dataset}"
|
| 52 |
+
benchmark_name = get_safe_name(benchmark_name)
|
| 53 |
+
col_name = benchmark_name
|
| 54 |
+
if "test" not in dataset_list[dataset]["splits"]:
|
| 55 |
+
continue
|
| 56 |
+
for metric in METRIC_LIST:
|
| 57 |
+
benchmark_dict[benchmark_name] = \
|
| 58 |
+
Benchmark(benchmark_name, metric, col_name, domain, lang, task)
|
| 59 |
+
return benchmark_dict
|
| 60 |
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
versions = ("AIR-Bench_24.04", "AIR-Bench_24.05")
|
| 63 |
+
qa_benchmark_dict = {}
|
| 64 |
+
for version in versions:
|
| 65 |
+
safe_version_name = get_safe_name(version)[-4:]
|
| 66 |
+
qa_benchmark_dict[safe_version_name] = Enum(f"QABenchmarks_{safe_version_name}", get_benchmarks_enum(version, "qa"))
|
| 67 |
|
| 68 |
+
long_doc_benchmark_dict = {}
|
| 69 |
+
for version in versions:
|
| 70 |
+
safe_version_name = get_safe_name(version)[-4:]
|
| 71 |
+
long_doc_benchmark_dict[safe_version_name] = Enum(f"LongDocBenchmarks_{safe_version_name}", get_benchmarks_enum(version, "long-doc"))
|
| 72 |
|
| 73 |
+
# _qa_benchmark_dict, = get_benchmarks_enum('AIR-Bench_24.04', "qa")
|
| 74 |
+
# _long_doc_benchmark_dict = get_benchmarks_enum('AIR-Bench_24.04', "long-doc")
|
| 75 |
|
| 76 |
+
QABenchmarks = Enum('QABenchmarks', qa_benchmark_dict)
|
| 77 |
+
LongDocBenchmarks = Enum('LongDocBenchmarks', long_doc_benchmark_dict)
|
src/display/{utils.py → columns.py}
RENAMED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
from dataclasses import dataclass, make_dataclass
|
| 2 |
|
| 3 |
-
from src.benchmarks import
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
def fields(raw_class):
|
|
@@ -19,17 +21,6 @@ class ColumnContent:
|
|
| 19 |
never_hidden: bool = False
|
| 20 |
|
| 21 |
|
| 22 |
-
COL_NAME_AVG = "Average ⬆️"
|
| 23 |
-
COL_NAME_RETRIEVAL_MODEL = "Retrieval Method"
|
| 24 |
-
COL_NAME_RERANKING_MODEL = "Reranking Model"
|
| 25 |
-
COL_NAME_RETRIEVAL_MODEL_LINK = "Retrieval Model LINK"
|
| 26 |
-
COL_NAME_RERANKING_MODEL_LINK = "Reranking Model LINK"
|
| 27 |
-
COL_NAME_RANK = "Rank 🏆"
|
| 28 |
-
COL_NAME_REVISION = "Revision"
|
| 29 |
-
COL_NAME_TIMESTAMP = "Submission Date"
|
| 30 |
-
COL_NAME_IS_ANONYMOUS = "Anonymous Submission"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
def get_default_auto_eval_column_dict():
|
| 34 |
auto_eval_column_dict = []
|
| 35 |
# Init
|
|
@@ -37,10 +28,12 @@ def get_default_auto_eval_column_dict():
|
|
| 37 |
["rank", ColumnContent, ColumnContent(COL_NAME_RANK, "number", True)]
|
| 38 |
)
|
| 39 |
auto_eval_column_dict.append(
|
| 40 |
-
["retrieval_model", ColumnContent,
|
|
|
|
| 41 |
)
|
| 42 |
auto_eval_column_dict.append(
|
| 43 |
-
["reranking_model", ColumnContent,
|
|
|
|
| 44 |
)
|
| 45 |
auto_eval_column_dict.append(
|
| 46 |
["revision", ColumnContent, ColumnContent(COL_NAME_REVISION, "markdown", True, never_hidden=True)]
|
|
@@ -52,10 +45,12 @@ def get_default_auto_eval_column_dict():
|
|
| 52 |
["average", ColumnContent, ColumnContent(COL_NAME_AVG, "number", True)]
|
| 53 |
)
|
| 54 |
auto_eval_column_dict.append(
|
| 55 |
-
["retrieval_model_link", ColumnContent,
|
|
|
|
| 56 |
)
|
| 57 |
auto_eval_column_dict.append(
|
| 58 |
-
["reranking_model_link", ColumnContent,
|
|
|
|
| 59 |
)
|
| 60 |
auto_eval_column_dict.append(
|
| 61 |
["is_anonymous", ColumnContent, ColumnContent(COL_NAME_IS_ANONYMOUS, "bool", False, hidden=True)]
|
|
@@ -63,10 +58,10 @@ def get_default_auto_eval_column_dict():
|
|
| 63 |
return auto_eval_column_dict
|
| 64 |
|
| 65 |
|
| 66 |
-
def make_autoevalcolumn(cls_name
|
| 67 |
auto_eval_column_dict = get_default_auto_eval_column_dict()
|
| 68 |
-
|
| 69 |
-
for benchmark in benchmarks:
|
| 70 |
auto_eval_column_dict.append(
|
| 71 |
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)]
|
| 72 |
)
|
|
@@ -75,19 +70,28 @@ def make_autoevalcolumn(cls_name="BenchmarksQA", benchmarks=BenchmarksQA):
|
|
| 75 |
return make_dataclass(cls_name, auto_eval_column_dict, frozen=True)
|
| 76 |
|
| 77 |
|
| 78 |
-
|
| 79 |
-
"
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
# Column selection
|
| 85 |
-
COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 86 |
-
COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 87 |
-
TYPES_QA = [c.type for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 88 |
-
TYPES_LONG_DOC = [c.type for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 89 |
-
COLS_LITE = [c.name for c in fields(AutoEvalColumnQA) if c.displayed_by_default and not c.hidden]
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from dataclasses import dataclass, make_dataclass
|
| 2 |
|
| 3 |
+
from src.benchmarks import QABenchmarks, LongDocBenchmarks
|
| 4 |
+
from src.envs import COL_NAME_AVG, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL_LINK, \
|
| 5 |
+
COL_NAME_RERANKING_MODEL_LINK, COL_NAME_RANK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
| 6 |
|
| 7 |
|
| 8 |
def fields(raw_class):
|
|
|
|
| 21 |
never_hidden: bool = False
|
| 22 |
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def get_default_auto_eval_column_dict():
|
| 25 |
auto_eval_column_dict = []
|
| 26 |
# Init
|
|
|
|
| 28 |
["rank", ColumnContent, ColumnContent(COL_NAME_RANK, "number", True)]
|
| 29 |
)
|
| 30 |
auto_eval_column_dict.append(
|
| 31 |
+
["retrieval_model", ColumnContent,
|
| 32 |
+
ColumnContent(COL_NAME_RETRIEVAL_MODEL, "markdown", True, hidden=False, never_hidden=True)]
|
| 33 |
)
|
| 34 |
auto_eval_column_dict.append(
|
| 35 |
+
["reranking_model", ColumnContent,
|
| 36 |
+
ColumnContent(COL_NAME_RERANKING_MODEL, "markdown", True, hidden=False, never_hidden=True)]
|
| 37 |
)
|
| 38 |
auto_eval_column_dict.append(
|
| 39 |
["revision", ColumnContent, ColumnContent(COL_NAME_REVISION, "markdown", True, never_hidden=True)]
|
|
|
|
| 45 |
["average", ColumnContent, ColumnContent(COL_NAME_AVG, "number", True)]
|
| 46 |
)
|
| 47 |
auto_eval_column_dict.append(
|
| 48 |
+
["retrieval_model_link", ColumnContent,
|
| 49 |
+
ColumnContent(COL_NAME_RETRIEVAL_MODEL_LINK, "markdown", False, hidden=True, never_hidden=False)]
|
| 50 |
)
|
| 51 |
auto_eval_column_dict.append(
|
| 52 |
+
["reranking_model_link", ColumnContent,
|
| 53 |
+
ColumnContent(COL_NAME_RERANKING_MODEL_LINK, "markdown", False, hidden=True, never_hidden=False)]
|
| 54 |
)
|
| 55 |
auto_eval_column_dict.append(
|
| 56 |
["is_anonymous", ColumnContent, ColumnContent(COL_NAME_IS_ANONYMOUS, "bool", False, hidden=True)]
|
|
|
|
| 58 |
return auto_eval_column_dict
|
| 59 |
|
| 60 |
|
| 61 |
+
def make_autoevalcolumn(cls_name, benchmarks):
|
| 62 |
auto_eval_column_dict = get_default_auto_eval_column_dict()
|
| 63 |
+
# Leaderboard columns
|
| 64 |
+
for benchmark in list(benchmarks.value):
|
| 65 |
auto_eval_column_dict.append(
|
| 66 |
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)]
|
| 67 |
)
|
|
|
|
| 70 |
return make_dataclass(cls_name, auto_eval_column_dict, frozen=True)
|
| 71 |
|
| 72 |
|
| 73 |
+
def get_default_col_names_and_types(benchmarks):
|
| 74 |
+
AutoEvalColumn = make_autoevalcolumn("AutoEvalColumn", benchmarks)
|
| 75 |
+
col_names = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 76 |
+
col_types = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 77 |
+
return col_names, col_types
|
| 78 |
|
| 79 |
+
# AutoEvalColumnQA = make_autoevalcolumn("AutoEvalColumnQA", QABenchmarks)
|
| 80 |
+
# COLS_QA = [c.name for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 81 |
+
# TYPES_QA = [c.type for c in fields(AutoEvalColumnQA) if not c.hidden]
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
def get_fixed_col_names_and_types():
|
| 85 |
+
fixed_cols = get_default_auto_eval_column_dict()[:-3]
|
| 86 |
+
return [c.name for _, _, c in fixed_cols], [c.type for _, _, c in fixed_cols]
|
| 87 |
+
|
| 88 |
+
# fixed_cols = get_default_auto_eval_column_dict()[:-3]
|
| 89 |
+
# FIXED_COLS = [c.name for _, _, c in fixed_cols]
|
| 90 |
+
# FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
|
| 91 |
|
| 92 |
+
|
| 93 |
+
# AutoEvalColumnLongDoc = make_autoevalcolumn("AutoEvalColumnLongDoc", LongDocBenchmarks)
|
| 94 |
+
# COLS_LONG_DOC = [c.name for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 95 |
+
# TYPES_LONG_DOC = [c.type for c in fields(AutoEvalColumnLongDoc) if not c.hidden]
|
| 96 |
+
|
| 97 |
+
# Column selection
|
src/display/gradio_formatting.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from src.envs import BENCHMARK_VERSION_LIST, LATEST_BENCHMARK_VERSION
|
|
|
|
| 3 |
|
| 4 |
def get_version_dropdown():
|
| 5 |
return gr.Dropdown(
|
|
@@ -52,7 +53,10 @@ def get_metric_dropdown(metric_list, default_metrics):
|
|
| 52 |
)
|
| 53 |
|
| 54 |
|
| 55 |
-
def get_domain_dropdown(
|
|
|
|
|
|
|
|
|
|
| 56 |
return gr.CheckboxGroup(
|
| 57 |
choices=domain_list,
|
| 58 |
value=default_domains,
|
|
@@ -61,10 +65,13 @@ def get_domain_dropdown(domain_list, default_domains):
|
|
| 61 |
)
|
| 62 |
|
| 63 |
|
| 64 |
-
def get_language_dropdown(
|
|
|
|
|
|
|
|
|
|
| 65 |
return gr.Dropdown(
|
| 66 |
choices=language_list,
|
| 67 |
-
value=
|
| 68 |
label="Select the languages",
|
| 69 |
multiselect=True,
|
| 70 |
interactive=True
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from src.envs import BENCHMARK_VERSION_LIST, LATEST_BENCHMARK_VERSION
|
| 3 |
+
from src.benchmarks import QABenchmarks
|
| 4 |
|
| 5 |
def get_version_dropdown():
|
| 6 |
return gr.Dropdown(
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
|
| 56 |
+
def get_domain_dropdown(benchmarks, default_domains=None):
|
| 57 |
+
domain_list = list(frozenset([c.value.domain for c in list(benchmarks.value)]))
|
| 58 |
+
if default_domains is None:
|
| 59 |
+
default_domains = domain_list
|
| 60 |
return gr.CheckboxGroup(
|
| 61 |
choices=domain_list,
|
| 62 |
value=default_domains,
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
|
| 68 |
+
def get_language_dropdown(benchmarks, default_languages=None):
|
| 69 |
+
language_list = list(frozenset([c.value.lang for c in list(benchmarks.value)]))
|
| 70 |
+
if default_languages is None:
|
| 71 |
+
default_languages = language_list
|
| 72 |
return gr.Dropdown(
|
| 73 |
choices=language_list,
|
| 74 |
+
value=default_languages,
|
| 75 |
label="Select the languages",
|
| 76 |
multiselect=True,
|
| 77 |
interactive=True
|
src/display/gradio_listener.py
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
from src.utils import update_table, update_table_long_doc
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
def set_listeners(
|
| 5 |
-
task,
|
| 6 |
-
displayed_leaderboard,
|
| 7 |
-
hidden_leaderboard,
|
| 8 |
-
search_bar,
|
| 9 |
-
selected_domains,
|
| 10 |
-
selected_langs,
|
| 11 |
-
selected_rerankings,
|
| 12 |
-
show_anonymous,
|
| 13 |
-
show_revision_and_timestamp,
|
| 14 |
-
|
| 15 |
-
):
|
| 16 |
-
if task == "qa":
|
| 17 |
-
update_table_func = update_table
|
| 18 |
-
elif task == "long-doc":
|
| 19 |
-
update_table_func = update_table_long_doc
|
| 20 |
-
else:
|
| 21 |
-
raise NotImplementedError
|
| 22 |
-
# Set search_bar listener
|
| 23 |
-
search_bar.submit(
|
| 24 |
-
update_table_func,
|
| 25 |
-
[
|
| 26 |
-
hidden_leaderboard, # hidden_leaderboard_table_for_search,
|
| 27 |
-
selected_domains,
|
| 28 |
-
selected_langs,
|
| 29 |
-
selected_rerankings,
|
| 30 |
-
search_bar,
|
| 31 |
-
show_anonymous,
|
| 32 |
-
],
|
| 33 |
-
displayed_leaderboard
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
# Set column-wise listener
|
| 37 |
-
for selector in [
|
| 38 |
-
selected_domains, selected_langs, show_anonymous, show_revision_and_timestamp, selected_rerankings
|
| 39 |
-
]:
|
| 40 |
-
selector.change(
|
| 41 |
-
update_table_func,
|
| 42 |
-
[
|
| 43 |
-
hidden_leaderboard,
|
| 44 |
-
selected_domains,
|
| 45 |
-
selected_langs,
|
| 46 |
-
selected_rerankings,
|
| 47 |
-
search_bar,
|
| 48 |
-
show_anonymous,
|
| 49 |
-
show_revision_and_timestamp
|
| 50 |
-
],
|
| 51 |
-
displayed_leaderboard,
|
| 52 |
-
queue=True,
|
| 53 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
CHANGED
|
@@ -30,4 +30,47 @@ BENCHMARK_VERSION_LIST = [
|
|
| 30 |
# "AIR-Bench_24.05",
|
| 31 |
]
|
| 32 |
|
| 33 |
-
LATEST_BENCHMARK_VERSION = BENCHMARK_VERSION_LIST[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# "AIR-Bench_24.05",
|
| 31 |
]
|
| 32 |
|
| 33 |
+
LATEST_BENCHMARK_VERSION = BENCHMARK_VERSION_LIST[0]
|
| 34 |
+
DEFAULT_METRIC_QA = "ndcg_at_10"
|
| 35 |
+
DEFAULT_METRIC_LONG_DOC = "recall_at_10"
|
| 36 |
+
METRIC_LIST = [
|
| 37 |
+
"ndcg_at_1",
|
| 38 |
+
"ndcg_at_3",
|
| 39 |
+
"ndcg_at_5",
|
| 40 |
+
"ndcg_at_10",
|
| 41 |
+
"ndcg_at_100",
|
| 42 |
+
"ndcg_at_1000",
|
| 43 |
+
"map_at_1",
|
| 44 |
+
"map_at_3",
|
| 45 |
+
"map_at_5",
|
| 46 |
+
"map_at_10",
|
| 47 |
+
"map_at_100",
|
| 48 |
+
"map_at_1000",
|
| 49 |
+
"recall_at_1",
|
| 50 |
+
"recall_at_3",
|
| 51 |
+
"recall_at_5",
|
| 52 |
+
"recall_at_10",
|
| 53 |
+
"recall_at_100",
|
| 54 |
+
"recall_at_1000",
|
| 55 |
+
"precision_at_1",
|
| 56 |
+
"precision_at_3",
|
| 57 |
+
"precision_at_5",
|
| 58 |
+
"precision_at_10",
|
| 59 |
+
"precision_at_100",
|
| 60 |
+
"precision_at_1000",
|
| 61 |
+
"mrr_at_1",
|
| 62 |
+
"mrr_at_3",
|
| 63 |
+
"mrr_at_5",
|
| 64 |
+
"mrr_at_10",
|
| 65 |
+
"mrr_at_100",
|
| 66 |
+
"mrr_at_1000"
|
| 67 |
+
]
|
| 68 |
+
COL_NAME_AVG = "Average ⬆️"
|
| 69 |
+
COL_NAME_RETRIEVAL_MODEL = "Retrieval Method"
|
| 70 |
+
COL_NAME_RERANKING_MODEL = "Reranking Model"
|
| 71 |
+
COL_NAME_RETRIEVAL_MODEL_LINK = "Retrieval Model LINK"
|
| 72 |
+
COL_NAME_RERANKING_MODEL_LINK = "Reranking Model LINK"
|
| 73 |
+
COL_NAME_RANK = "Rank 🏆"
|
| 74 |
+
COL_NAME_REVISION = "Revision"
|
| 75 |
+
COL_NAME_TIMESTAMP = "Submission Date"
|
| 76 |
+
COL_NAME_IS_ANONYMOUS = "Anonymous Submission"
|
src/loaders.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
from src.envs import DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC, COL_NAME_REVISION, COL_NAME_TIMESTAMP, \
|
| 7 |
+
COL_NAME_IS_ANONYMOUS, BENCHMARK_VERSION_LIST
|
| 8 |
+
|
| 9 |
+
from src.models import FullEvalResult, LeaderboardDataStore
|
| 10 |
+
from src.utils import get_default_cols, get_leaderboard_df
|
| 11 |
+
|
| 12 |
+
pd.options.mode.copy_on_write = True
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_raw_eval_results(results_path: str) -> List[FullEvalResult]:
|
| 16 |
+
"""
|
| 17 |
+
Load the evaluation results from a json file
|
| 18 |
+
"""
|
| 19 |
+
model_result_filepaths = []
|
| 20 |
+
for root, dirs, files in os.walk(results_path):
|
| 21 |
+
if len(files) == 0:
|
| 22 |
+
continue
|
| 23 |
+
|
| 24 |
+
# select the latest results
|
| 25 |
+
for file in files:
|
| 26 |
+
if not (file.startswith("results") and file.endswith(".json")):
|
| 27 |
+
print(f'skip {file}')
|
| 28 |
+
continue
|
| 29 |
+
model_result_filepaths.append(os.path.join(root, file))
|
| 30 |
+
|
| 31 |
+
eval_results = {}
|
| 32 |
+
for model_result_filepath in model_result_filepaths:
|
| 33 |
+
# create evaluation results
|
| 34 |
+
try:
|
| 35 |
+
eval_result = FullEvalResult.init_from_json_file(model_result_filepath)
|
| 36 |
+
except UnicodeDecodeError as e:
|
| 37 |
+
print(f"loading file failed. {model_result_filepath}")
|
| 38 |
+
continue
|
| 39 |
+
print(f'file loaded: {model_result_filepath}')
|
| 40 |
+
timestamp = eval_result.timestamp
|
| 41 |
+
eval_results[timestamp] = eval_result
|
| 42 |
+
|
| 43 |
+
results = []
|
| 44 |
+
for k, v in eval_results.items():
|
| 45 |
+
try:
|
| 46 |
+
v.to_dict()
|
| 47 |
+
results.append(v)
|
| 48 |
+
except KeyError:
|
| 49 |
+
print(f"loading failed: {k}")
|
| 50 |
+
continue
|
| 51 |
+
return results
|
| 52 |
+
|
| 53 |
+
def get_safe_name(name: str):
|
| 54 |
+
"""Get RFC 1123 compatible safe name"""
|
| 55 |
+
name = name.replace('-', '_')
|
| 56 |
+
return ''.join(
|
| 57 |
+
character.lower()
|
| 58 |
+
for character in name
|
| 59 |
+
if (character.isalnum() or character == '_'))
|
| 60 |
+
|
| 61 |
+
def load_leaderboard_datastore(file_path, version) -> LeaderboardDataStore:
|
| 62 |
+
slug = get_safe_name(version)[-4:]
|
| 63 |
+
lb_data_store = LeaderboardDataStore(version, slug, None, None, None, None, None, None, None, None)
|
| 64 |
+
lb_data_store.raw_data = load_raw_eval_results(file_path)
|
| 65 |
+
print(f'raw data: {len(lb_data_store.raw_data)}')
|
| 66 |
+
|
| 67 |
+
lb_data_store.raw_df_qa = get_leaderboard_df(
|
| 68 |
+
lb_data_store, task='qa', metric=DEFAULT_METRIC_QA)
|
| 69 |
+
print(f'QA data loaded: {lb_data_store.raw_df_qa.shape}')
|
| 70 |
+
lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy()
|
| 71 |
+
shown_columns_qa, types_qa = get_default_cols('qa', lb_data_store.slug, add_fix_cols=True)
|
| 72 |
+
# shown_columns_qa, types_qa = get_default_cols(
|
| 73 |
+
# 'qa', lb_data_store.leaderboard_df_qa.columns, add_fix_cols=True)
|
| 74 |
+
lb_data_store.types_qa = types_qa
|
| 75 |
+
lb_data_store.leaderboard_df_qa = \
|
| 76 |
+
lb_data_store.leaderboard_df_qa[~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
|
| 77 |
+
lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
| 78 |
+
|
| 79 |
+
lb_data_store.raw_df_long_doc = get_leaderboard_df(
|
| 80 |
+
lb_data_store, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
|
| 81 |
+
print(f'Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}')
|
| 82 |
+
lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy()
|
| 83 |
+
shown_columns_long_doc, types_long_doc = get_default_cols(
|
| 84 |
+
'long-doc', lb_data_store.slug, add_fix_cols=True)
|
| 85 |
+
lb_data_store.types_long_doc = types_long_doc
|
| 86 |
+
lb_data_store.leaderboard_df_long_doc = \
|
| 87 |
+
lb_data_store.leaderboard_df_long_doc[
|
| 88 |
+
~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][shown_columns_long_doc]
|
| 89 |
+
lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
| 90 |
+
|
| 91 |
+
lb_data_store.reranking_models = sorted(
|
| 92 |
+
list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data])))
|
| 93 |
+
return lb_data_store
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def load_eval_results(file_path: str):
|
| 97 |
+
output = {}
|
| 98 |
+
# versions = BENCHMARK_VERSION_LIST
|
| 99 |
+
for version in BENCHMARK_VERSION_LIST:
|
| 100 |
+
fn = f"{file_path}/{version}"
|
| 101 |
+
output[version] = load_leaderboard_datastore(fn, version)
|
| 102 |
+
return output
|
src/{read_evals.py → models.py}
RENAMED
|
@@ -1,38 +1,15 @@
|
|
| 1 |
import json
|
| 2 |
-
import os.path
|
| 3 |
from collections import defaultdict
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import List
|
| 6 |
|
| 7 |
import pandas as pd
|
| 8 |
|
| 9 |
from src.benchmarks import get_safe_name
|
| 10 |
-
from src.
|
| 11 |
-
|
| 12 |
-
COL_NAME_RETRIEVAL_MODEL,
|
| 13 |
-
COL_NAME_RERANKING_MODEL_LINK,
|
| 14 |
-
COL_NAME_RETRIEVAL_MODEL_LINK,
|
| 15 |
-
COL_NAME_REVISION,
|
| 16 |
-
COL_NAME_TIMESTAMP,
|
| 17 |
-
COL_NAME_IS_ANONYMOUS,
|
| 18 |
-
COLS_QA,
|
| 19 |
-
QA_BENCHMARK_COLS,
|
| 20 |
-
COLS_LONG_DOC,
|
| 21 |
-
LONG_DOC_BENCHMARK_COLS,
|
| 22 |
-
COL_NAME_AVG,
|
| 23 |
-
COL_NAME_RANK
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
from src.display.formatting import make_clickable_model
|
| 27 |
|
| 28 |
-
pd.options.mode.copy_on_write = True
|
| 29 |
-
|
| 30 |
-
def calculate_mean(row):
|
| 31 |
-
if pd.isna(row).any():
|
| 32 |
-
return -1
|
| 33 |
-
else:
|
| 34 |
-
return row.mean()
|
| 35 |
-
|
| 36 |
|
| 37 |
@dataclass
|
| 38 |
class EvalResult:
|
|
@@ -149,80 +126,15 @@ class FullEvalResult:
|
|
| 149 |
return [v for v in results.values()]
|
| 150 |
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
print(f'skip {file}')
|
| 165 |
-
continue
|
| 166 |
-
model_result_filepaths.append(os.path.join(root, file))
|
| 167 |
-
|
| 168 |
-
eval_results = {}
|
| 169 |
-
for model_result_filepath in model_result_filepaths:
|
| 170 |
-
# create evaluation results
|
| 171 |
-
try:
|
| 172 |
-
eval_result = FullEvalResult.init_from_json_file(model_result_filepath)
|
| 173 |
-
except UnicodeDecodeError as e:
|
| 174 |
-
print(f"loading file failed. {model_result_filepath}")
|
| 175 |
-
continue
|
| 176 |
-
print(f'file loaded: {model_result_filepath}')
|
| 177 |
-
timestamp = eval_result.timestamp
|
| 178 |
-
eval_results[timestamp] = eval_result
|
| 179 |
-
|
| 180 |
-
results = []
|
| 181 |
-
for k, v in eval_results.items():
|
| 182 |
-
try:
|
| 183 |
-
v.to_dict()
|
| 184 |
-
results.append(v)
|
| 185 |
-
except KeyError:
|
| 186 |
-
print(f"loading failed: {k}")
|
| 187 |
-
continue
|
| 188 |
-
return results
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -> pd.DataFrame:
|
| 192 |
-
"""
|
| 193 |
-
Creates a dataframe from all the individual experiment results
|
| 194 |
-
"""
|
| 195 |
-
cols = [COL_NAME_IS_ANONYMOUS, ]
|
| 196 |
-
if task == "qa":
|
| 197 |
-
cols += COLS_QA
|
| 198 |
-
benchmark_cols = QA_BENCHMARK_COLS
|
| 199 |
-
elif task == "long-doc":
|
| 200 |
-
cols += COLS_LONG_DOC
|
| 201 |
-
benchmark_cols = LONG_DOC_BENCHMARK_COLS
|
| 202 |
-
else:
|
| 203 |
-
raise NotImplemented
|
| 204 |
-
all_data_json = []
|
| 205 |
-
for v in raw_data:
|
| 206 |
-
all_data_json += v.to_dict(task=task, metric=metric)
|
| 207 |
-
df = pd.DataFrame.from_records(all_data_json)
|
| 208 |
-
# print(f'dataframe created: {df.shape}')
|
| 209 |
-
|
| 210 |
-
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
| 211 |
-
|
| 212 |
-
# calculate the average score for selected benchmarks
|
| 213 |
-
df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
|
| 214 |
-
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 215 |
-
df.reset_index(inplace=True, drop=True)
|
| 216 |
-
|
| 217 |
-
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
| 218 |
-
df = df[_cols].round(decimals=2)
|
| 219 |
-
|
| 220 |
-
# filter out if any of the benchmarks have not been produced
|
| 221 |
-
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 222 |
-
|
| 223 |
-
# shorten the revision
|
| 224 |
-
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]
|
| 225 |
-
|
| 226 |
-
# # replace "0" with "-" for average score
|
| 227 |
-
# df[COL_NAME_AVG] = df[COL_NAME_AVG].replace(0, "-")
|
| 228 |
-
return df
|
|
|
|
| 1 |
import json
|
|
|
|
| 2 |
from collections import defaultdict
|
| 3 |
from dataclasses import dataclass
|
| 4 |
+
from typing import List, Optional
|
| 5 |
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
from src.benchmarks import get_safe_name
|
| 9 |
+
from src.envs import COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL_LINK, \
|
| 10 |
+
COL_NAME_RERANKING_MODEL_LINK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from src.display.formatting import make_clickable_model
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
@dataclass
|
| 15 |
class EvalResult:
|
|
|
|
| 126 |
return [v for v in results.values()]
|
| 127 |
|
| 128 |
|
| 129 |
+
@dataclass
|
| 130 |
+
class LeaderboardDataStore:
|
| 131 |
+
version: str
|
| 132 |
+
slug: str
|
| 133 |
+
raw_data: Optional[list]
|
| 134 |
+
raw_df_qa: Optional[pd.DataFrame]
|
| 135 |
+
raw_df_long_doc: Optional[pd.DataFrame]
|
| 136 |
+
leaderboard_df_qa: Optional[pd.DataFrame]
|
| 137 |
+
leaderboard_df_long_doc: Optional[pd.DataFrame]
|
| 138 |
+
reranking_models: Optional[list]
|
| 139 |
+
types_qa: Optional[list]
|
| 140 |
+
types_long_doc: Optional[list]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils.py
CHANGED
|
@@ -2,20 +2,24 @@ import json
|
|
| 2 |
import hashlib
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
from pathlib import Path
|
| 5 |
-
from typing import List
|
| 6 |
|
| 7 |
import pandas as pd
|
| 8 |
|
| 9 |
-
from src.benchmarks import
|
| 10 |
from src.display.formatting import styled_message, styled_error
|
| 11 |
-
from src.display.
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
from src.read_evals import FullEvalResult, get_leaderboard_df, calculate_mean
|
| 15 |
|
| 16 |
import re
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def remove_html(input_str):
|
| 20 |
# Regular expression for finding HTML tags
|
| 21 |
clean = re.sub(r'<.*?>', '', input_str)
|
|
@@ -55,67 +59,61 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
| 55 |
return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))]
|
| 56 |
|
| 57 |
|
| 58 |
-
def get_default_cols(task: str,
|
| 59 |
cols = []
|
| 60 |
types = []
|
| 61 |
if task == "qa":
|
| 62 |
-
|
| 63 |
-
types_list = TYPES_QA
|
| 64 |
-
benchmark_list = BENCHMARK_COLS_QA
|
| 65 |
elif task == "long-doc":
|
| 66 |
-
|
| 67 |
-
types_list = TYPES_LONG_DOC
|
| 68 |
-
benchmark_list = BENCHMARK_COLS_LONG_DOC
|
| 69 |
else:
|
| 70 |
raise NotImplemented
|
|
|
|
|
|
|
| 71 |
for col_name, col_type in zip(cols_list, types_list):
|
| 72 |
if col_name not in benchmark_list:
|
| 73 |
continue
|
| 74 |
-
if len(columns) > 0 and col_name not in columns:
|
| 75 |
-
continue
|
| 76 |
cols.append(col_name)
|
| 77 |
types.append(col_type)
|
| 78 |
|
| 79 |
if add_fix_cols:
|
| 80 |
_cols = []
|
| 81 |
_types = []
|
|
|
|
| 82 |
for col_name, col_type in zip(cols, types):
|
| 83 |
-
if col_name in
|
| 84 |
continue
|
| 85 |
_cols.append(col_name)
|
| 86 |
_types.append(col_type)
|
| 87 |
-
cols =
|
| 88 |
-
types =
|
| 89 |
return cols, types
|
| 90 |
|
| 91 |
|
| 92 |
-
fixed_cols = get_default_auto_eval_column_dict()[:-3]
|
| 93 |
-
|
| 94 |
-
FIXED_COLS = [c.name for _, _, c in fixed_cols]
|
| 95 |
-
FIXED_COLS_TYPES = [c.type for _, _, c in fixed_cols]
|
| 96 |
-
|
| 97 |
-
|
| 98 |
def select_columns(
|
| 99 |
df: pd.DataFrame,
|
| 100 |
domain_query: list,
|
| 101 |
language_query: list,
|
| 102 |
task: str = "qa",
|
| 103 |
-
reset_ranking: bool = True
|
|
|
|
| 104 |
) -> pd.DataFrame:
|
| 105 |
-
cols, _ = get_default_cols(task=task,
|
| 106 |
selected_cols = []
|
| 107 |
for c in cols:
|
| 108 |
if task == "qa":
|
| 109 |
-
eval_col =
|
| 110 |
elif task == "long-doc":
|
| 111 |
-
eval_col =
|
| 112 |
if eval_col.domain not in domain_query:
|
| 113 |
continue
|
| 114 |
if eval_col.lang not in language_query:
|
| 115 |
continue
|
| 116 |
selected_cols.append(c)
|
| 117 |
# We use COLS to maintain sorting
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
if reset_ranking:
|
| 120 |
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
|
| 121 |
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
|
@@ -124,9 +122,17 @@ def select_columns(
|
|
| 124 |
|
| 125 |
return filtered_df
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
def _update_table(
|
| 129 |
task: str,
|
|
|
|
| 130 |
hidden_df: pd.DataFrame,
|
| 131 |
domains: list,
|
| 132 |
langs: list,
|
|
@@ -136,32 +142,20 @@ def _update_table(
|
|
| 136 |
reset_ranking: bool = True,
|
| 137 |
show_revision_and_timestamp: bool = False
|
| 138 |
):
|
|
|
|
| 139 |
filtered_df = hidden_df.copy()
|
| 140 |
if not show_anonymous:
|
| 141 |
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
|
| 142 |
filtered_df = filter_models(filtered_df, reranking_query)
|
| 143 |
filtered_df = filter_queries(query, filtered_df)
|
| 144 |
-
filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking)
|
| 145 |
if not show_revision_and_timestamp:
|
| 146 |
filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
| 147 |
return filtered_df
|
| 148 |
|
| 149 |
|
| 150 |
-
def update_table(
|
| 151 |
-
hidden_df: pd.DataFrame,
|
| 152 |
-
domains: list,
|
| 153 |
-
langs: list,
|
| 154 |
-
reranking_query: list,
|
| 155 |
-
query: str,
|
| 156 |
-
show_anonymous: bool,
|
| 157 |
-
show_revision_and_timestamp: bool = False,
|
| 158 |
-
reset_ranking: bool = True
|
| 159 |
-
):
|
| 160 |
-
return _update_table(
|
| 161 |
-
"qa", hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
def update_table_long_doc(
|
|
|
|
| 165 |
hidden_df: pd.DataFrame,
|
| 166 |
domains: list,
|
| 167 |
langs: list,
|
|
@@ -173,11 +167,13 @@ def update_table_long_doc(
|
|
| 173 |
|
| 174 |
):
|
| 175 |
return _update_table(
|
| 176 |
-
"long-doc",
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
def update_metric(
|
| 180 |
-
|
| 181 |
task: str,
|
| 182 |
metric: str,
|
| 183 |
domains: list,
|
|
@@ -187,9 +183,12 @@ def update_metric(
|
|
| 187 |
show_anonymous: bool = False,
|
| 188 |
show_revision_and_timestamp: bool = False,
|
| 189 |
) -> pd.DataFrame:
|
|
|
|
| 190 |
if task == 'qa':
|
| 191 |
-
leaderboard_df = get_leaderboard_df(
|
|
|
|
| 192 |
return update_table(
|
|
|
|
| 193 |
leaderboard_df,
|
| 194 |
domains,
|
| 195 |
langs,
|
|
@@ -199,8 +198,10 @@ def update_metric(
|
|
| 199 |
show_revision_and_timestamp
|
| 200 |
)
|
| 201 |
elif task == "long-doc":
|
| 202 |
-
leaderboard_df = get_leaderboard_df(
|
|
|
|
| 203 |
return update_table_long_doc(
|
|
|
|
| 204 |
leaderboard_df,
|
| 205 |
domains,
|
| 206 |
langs,
|
|
@@ -218,7 +219,6 @@ def upload_file(filepath: str):
|
|
| 218 |
return filepath
|
| 219 |
|
| 220 |
|
| 221 |
-
|
| 222 |
def get_iso_format_timestamp():
|
| 223 |
# Get the current timestamp with UTC as the timezone
|
| 224 |
current_timestamp = datetime.now(timezone.utc)
|
|
@@ -316,3 +316,95 @@ def submit_results(
|
|
| 316 |
def reset_rank(df):
|
| 317 |
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 318 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import hashlib
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
from pathlib import Path
|
|
|
|
| 5 |
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
+
from src.benchmarks import QABenchmarks, LongDocBenchmarks
|
| 9 |
from src.display.formatting import styled_message, styled_error
|
| 10 |
+
from src.display.columns import get_default_col_names_and_types, get_fixed_col_names_and_types
|
| 11 |
+
from src.envs import API, SEARCH_RESULTS_REPO, LATEST_BENCHMARK_VERSION, COL_NAME_AVG, COL_NAME_RETRIEVAL_MODEL, \
|
| 12 |
+
COL_NAME_RERANKING_MODEL, COL_NAME_RANK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
|
|
|
| 13 |
|
| 14 |
import re
|
| 15 |
|
| 16 |
|
| 17 |
+
def calculate_mean(row):
|
| 18 |
+
if pd.isna(row).any():
|
| 19 |
+
return -1
|
| 20 |
+
else:
|
| 21 |
+
return row.mean()
|
| 22 |
+
|
| 23 |
def remove_html(input_str):
|
| 24 |
# Regular expression for finding HTML tags
|
| 25 |
clean = re.sub(r'<.*?>', '', input_str)
|
|
|
|
| 59 |
return df[(df[COL_NAME_RETRIEVAL_MODEL].str.contains(query, case=False))]
|
| 60 |
|
| 61 |
|
| 62 |
+
def get_default_cols(task: str, version_slug, add_fix_cols: bool=True) -> tuple:
|
| 63 |
cols = []
|
| 64 |
types = []
|
| 65 |
if task == "qa":
|
| 66 |
+
benchmarks = QABenchmarks[version_slug]
|
|
|
|
|
|
|
| 67 |
elif task == "long-doc":
|
| 68 |
+
benchmarks = LongDocBenchmarks[version_slug]
|
|
|
|
|
|
|
| 69 |
else:
|
| 70 |
raise NotImplemented
|
| 71 |
+
cols_list, types_list = get_default_col_names_and_types(benchmarks)
|
| 72 |
+
benchmark_list = [c.value.col_name for c in list(benchmarks.value)]
|
| 73 |
for col_name, col_type in zip(cols_list, types_list):
|
| 74 |
if col_name not in benchmark_list:
|
| 75 |
continue
|
|
|
|
|
|
|
| 76 |
cols.append(col_name)
|
| 77 |
types.append(col_type)
|
| 78 |
|
| 79 |
if add_fix_cols:
|
| 80 |
_cols = []
|
| 81 |
_types = []
|
| 82 |
+
fixed_cols, fixed_cols_types = get_fixed_col_names_and_types()
|
| 83 |
for col_name, col_type in zip(cols, types):
|
| 84 |
+
if col_name in fixed_cols:
|
| 85 |
continue
|
| 86 |
_cols.append(col_name)
|
| 87 |
_types.append(col_type)
|
| 88 |
+
cols = fixed_cols + _cols
|
| 89 |
+
types = fixed_cols_types + _types
|
| 90 |
return cols, types
|
| 91 |
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def select_columns(
|
| 94 |
df: pd.DataFrame,
|
| 95 |
domain_query: list,
|
| 96 |
language_query: list,
|
| 97 |
task: str = "qa",
|
| 98 |
+
reset_ranking: bool = True,
|
| 99 |
+
version_slug: str = None
|
| 100 |
) -> pd.DataFrame:
|
| 101 |
+
cols, _ = get_default_cols(task=task, version_slug=version_slug, add_fix_cols=False)
|
| 102 |
selected_cols = []
|
| 103 |
for c in cols:
|
| 104 |
if task == "qa":
|
| 105 |
+
eval_col = QABenchmarks[version_slug].value[c].value
|
| 106 |
elif task == "long-doc":
|
| 107 |
+
eval_col = LongDocBenchmarks[version_slug].value[c].value
|
| 108 |
if eval_col.domain not in domain_query:
|
| 109 |
continue
|
| 110 |
if eval_col.lang not in language_query:
|
| 111 |
continue
|
| 112 |
selected_cols.append(c)
|
| 113 |
# We use COLS to maintain sorting
|
| 114 |
+
fixed_cols, _ = get_fixed_col_names_and_types()
|
| 115 |
+
filtered_df = df[fixed_cols + selected_cols]
|
| 116 |
+
filtered_df.replace({"": pd.NA}, inplace=True)
|
| 117 |
if reset_ranking:
|
| 118 |
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
|
| 119 |
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
|
|
|
| 122 |
|
| 123 |
return filtered_df
|
| 124 |
|
| 125 |
+
def get_safe_name(name: str):
|
| 126 |
+
"""Get RFC 1123 compatible safe name"""
|
| 127 |
+
name = name.replace('-', '_')
|
| 128 |
+
return ''.join(
|
| 129 |
+
character.lower()
|
| 130 |
+
for character in name
|
| 131 |
+
if (character.isalnum() or character == '_'))
|
| 132 |
|
| 133 |
def _update_table(
|
| 134 |
task: str,
|
| 135 |
+
version: str,
|
| 136 |
hidden_df: pd.DataFrame,
|
| 137 |
domains: list,
|
| 138 |
langs: list,
|
|
|
|
| 142 |
reset_ranking: bool = True,
|
| 143 |
show_revision_and_timestamp: bool = False
|
| 144 |
):
|
| 145 |
+
version_slug = get_safe_name(version)[-4:]
|
| 146 |
filtered_df = hidden_df.copy()
|
| 147 |
if not show_anonymous:
|
| 148 |
filtered_df = filtered_df[~filtered_df[COL_NAME_IS_ANONYMOUS]]
|
| 149 |
filtered_df = filter_models(filtered_df, reranking_query)
|
| 150 |
filtered_df = filter_queries(query, filtered_df)
|
| 151 |
+
filtered_df = select_columns(filtered_df, domains, langs, task, reset_ranking, version_slug)
|
| 152 |
if not show_revision_and_timestamp:
|
| 153 |
filtered_df.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
|
| 154 |
return filtered_df
|
| 155 |
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
def update_table_long_doc(
|
| 158 |
+
version: str,
|
| 159 |
hidden_df: pd.DataFrame,
|
| 160 |
domains: list,
|
| 161 |
langs: list,
|
|
|
|
| 167 |
|
| 168 |
):
|
| 169 |
return _update_table(
|
| 170 |
+
"long-doc",
|
| 171 |
+
version,
|
| 172 |
+
hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp)
|
| 173 |
|
| 174 |
|
| 175 |
def update_metric(
|
| 176 |
+
datastore,
|
| 177 |
task: str,
|
| 178 |
metric: str,
|
| 179 |
domains: list,
|
|
|
|
| 183 |
show_anonymous: bool = False,
|
| 184 |
show_revision_and_timestamp: bool = False,
|
| 185 |
) -> pd.DataFrame:
|
| 186 |
+
# raw_data = datastore.raw_data
|
| 187 |
if task == 'qa':
|
| 188 |
+
leaderboard_df = get_leaderboard_df(datastore, task=task, metric=metric)
|
| 189 |
+
version = datastore.version
|
| 190 |
return update_table(
|
| 191 |
+
version,
|
| 192 |
leaderboard_df,
|
| 193 |
domains,
|
| 194 |
langs,
|
|
|
|
| 198 |
show_revision_and_timestamp
|
| 199 |
)
|
| 200 |
elif task == "long-doc":
|
| 201 |
+
leaderboard_df = get_leaderboard_df(datastore, task=task, metric=metric)
|
| 202 |
+
version = datastore.version
|
| 203 |
return update_table_long_doc(
|
| 204 |
+
version,
|
| 205 |
leaderboard_df,
|
| 206 |
domains,
|
| 207 |
langs,
|
|
|
|
| 219 |
return filepath
|
| 220 |
|
| 221 |
|
|
|
|
| 222 |
def get_iso_format_timestamp():
|
| 223 |
# Get the current timestamp with UTC as the timezone
|
| 224 |
current_timestamp = datetime.now(timezone.utc)
|
|
|
|
| 316 |
def reset_rank(df):
|
| 317 |
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 318 |
return df
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def get_leaderboard_df(datastore, task: str, metric: str) -> pd.DataFrame:
|
| 322 |
+
"""
|
| 323 |
+
Creates a dataframe from all the individual experiment results
|
| 324 |
+
"""
|
| 325 |
+
raw_data = datastore.raw_data
|
| 326 |
+
cols = [COL_NAME_IS_ANONYMOUS, ]
|
| 327 |
+
if task == "qa":
|
| 328 |
+
benchmarks = QABenchmarks[datastore.slug]
|
| 329 |
+
elif task == "long-doc":
|
| 330 |
+
benchmarks = LongDocBenchmarks[datastore.slug]
|
| 331 |
+
else:
|
| 332 |
+
raise NotImplemented
|
| 333 |
+
cols_qa, _ = get_default_col_names_and_types(benchmarks)
|
| 334 |
+
cols += cols_qa
|
| 335 |
+
benchmark_cols = [t.value.col_name for t in list(benchmarks.value)]
|
| 336 |
+
all_data_json = []
|
| 337 |
+
for v in raw_data:
|
| 338 |
+
all_data_json += v.to_dict(task=task, metric=metric)
|
| 339 |
+
df = pd.DataFrame.from_records(all_data_json)
|
| 340 |
+
|
| 341 |
+
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
| 342 |
+
|
| 343 |
+
# calculate the average score for selected benchmarks
|
| 344 |
+
df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
|
| 345 |
+
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 346 |
+
df.reset_index(inplace=True, drop=True)
|
| 347 |
+
|
| 348 |
+
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
| 349 |
+
df = df[_cols].round(decimals=2)
|
| 350 |
+
|
| 351 |
+
# filter out if any of the benchmarks have not been produced
|
| 352 |
+
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 353 |
+
|
| 354 |
+
# shorten the revision
|
| 355 |
+
df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]
|
| 356 |
+
|
| 357 |
+
# # replace "0" with "-" for average score
|
| 358 |
+
# df[COL_NAME_AVG] = df[COL_NAME_AVG].replace(0, "-")
|
| 359 |
+
return df
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def set_listeners(
|
| 363 |
+
task,
|
| 364 |
+
target_df,
|
| 365 |
+
source_df,
|
| 366 |
+
search_bar,
|
| 367 |
+
version,
|
| 368 |
+
selected_domains,
|
| 369 |
+
selected_langs,
|
| 370 |
+
selected_rerankings,
|
| 371 |
+
show_anonymous,
|
| 372 |
+
show_revision_and_timestamp,
|
| 373 |
+
):
|
| 374 |
+
if task == "qa":
|
| 375 |
+
update_table_func = update_table
|
| 376 |
+
elif task == "long-doc":
|
| 377 |
+
update_table_func = update_table_long_doc
|
| 378 |
+
else:
|
| 379 |
+
raise NotImplementedError
|
| 380 |
+
selector_list = [
|
| 381 |
+
selected_domains,
|
| 382 |
+
selected_langs,
|
| 383 |
+
selected_rerankings,
|
| 384 |
+
search_bar,
|
| 385 |
+
show_anonymous
|
| 386 |
+
]
|
| 387 |
+
search_bar_args = [source_df, version,] + selector_list
|
| 388 |
+
selector_args = [version, source_df] + selector_list + [show_revision_and_timestamp,]
|
| 389 |
+
# Set search_bar listener
|
| 390 |
+
search_bar.submit(update_table_func, search_bar_args, target_df)
|
| 391 |
+
|
| 392 |
+
# Set column-wise listener
|
| 393 |
+
for selector in selector_list:
|
| 394 |
+
selector.change(update_table_func, selector_args, target_df, queue=True,)
|
| 395 |
+
|
| 396 |
+
def update_table(
|
| 397 |
+
version: str,
|
| 398 |
+
hidden_df: pd.DataFrame,
|
| 399 |
+
domains: list,
|
| 400 |
+
langs: list,
|
| 401 |
+
reranking_query: list,
|
| 402 |
+
query: str,
|
| 403 |
+
show_anonymous: bool,
|
| 404 |
+
show_revision_and_timestamp: bool = False,
|
| 405 |
+
reset_ranking: bool = True,
|
| 406 |
+
):
|
| 407 |
+
return _update_table(
|
| 408 |
+
"qa",
|
| 409 |
+
version,
|
| 410 |
+
hidden_df, domains, langs, reranking_query, query, show_anonymous, reset_ranking, show_revision_and_timestamp)
|
tests/src/display/test_utils.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import pytest
|
| 2 |
-
from src.display.utils import fields, AutoEvalColumnQA, COLS_QA, COLS_LONG_DOC,
|
| 3 |
|
| 4 |
|
| 5 |
def test_fields():
|
|
@@ -10,11 +10,8 @@ def test_fields():
|
|
| 10 |
def test_macro_variables():
|
| 11 |
print(f'COLS_QA: {COLS_QA}')
|
| 12 |
print(f'COLS_LONG_DOC: {COLS_LONG_DOC}')
|
| 13 |
-
print(f'COLS_LITE: {COLS_LITE}')
|
| 14 |
print(f'TYPES_QA: {TYPES_QA}')
|
| 15 |
print(f'TYPES_LONG_DOC: {TYPES_LONG_DOC}')
|
| 16 |
-
print(f'QA_BENCHMARK_COLS: {QA_BENCHMARK_COLS}')
|
| 17 |
-
print(f'LONG_DOC_BENCHMARK_COLS: {LONG_DOC_BENCHMARK_COLS}')
|
| 18 |
|
| 19 |
|
| 20 |
def test_get_default_auto_eval_column_dict():
|
|
|
|
| 1 |
import pytest
|
| 2 |
+
from src.display.utils import fields, AutoEvalColumnQA, COLS_QA, COLS_LONG_DOC, TYPES_QA, TYPES_LONG_DOC, get_default_auto_eval_column_dict
|
| 3 |
|
| 4 |
|
| 5 |
def test_fields():
|
|
|
|
| 10 |
def test_macro_variables():
|
| 11 |
print(f'COLS_QA: {COLS_QA}')
|
| 12 |
print(f'COLS_LONG_DOC: {COLS_LONG_DOC}')
|
|
|
|
| 13 |
print(f'TYPES_QA: {TYPES_QA}')
|
| 14 |
print(f'TYPES_LONG_DOC: {TYPES_LONG_DOC}')
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def test_get_default_auto_eval_column_dict():
|
tests/src/test_benchmarks.py
CHANGED
|
@@ -1,9 +1,16 @@
|
|
| 1 |
-
from src.benchmarks import
|
| 2 |
|
| 3 |
|
| 4 |
def test_qabenchmarks():
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def test_longdocbenchmarks():
|
| 9 |
-
print(list(
|
|
|
|
| 1 |
+
from src.benchmarks import QABenchmarks, LongDocBenchmarks
|
| 2 |
|
| 3 |
|
| 4 |
def test_qabenchmarks():
|
| 5 |
+
for benchmark_list in list(QABenchmarks):
|
| 6 |
+
print(benchmark_list.name)
|
| 7 |
+
for b in list(benchmark_list.value):
|
| 8 |
+
print(b)
|
| 9 |
+
qa_benchmarks = QABenchmarks["2404"]
|
| 10 |
+
l = list(frozenset([c.value.domain for c in list(qa_benchmarks.value)]))
|
| 11 |
+
print(l)
|
| 12 |
+
|
| 13 |
|
| 14 |
|
| 15 |
def test_longdocbenchmarks():
|
| 16 |
+
print(list(LongDocBenchmarks))
|
tests/src/test_read_evals.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
from pathlib import Path
|
| 2 |
|
| 3 |
-
from src.read_evals import
|
|
|
|
|
|
|
| 4 |
|
| 5 |
cur_fp = Path(__file__)
|
| 6 |
|
|
@@ -29,7 +31,7 @@ def test_to_dict():
|
|
| 29 |
|
| 30 |
def test_get_raw_eval_results():
|
| 31 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
| 32 |
-
results =
|
| 33 |
# only load the latest results
|
| 34 |
assert len(results) == 4
|
| 35 |
assert results[0].eval_name == "bge-base-en-v1.5_NoReranker"
|
|
@@ -40,7 +42,7 @@ def test_get_raw_eval_results():
|
|
| 40 |
|
| 41 |
def test_get_leaderboard_df():
|
| 42 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
| 43 |
-
raw_data =
|
| 44 |
df = get_leaderboard_df(raw_data, 'qa', 'ndcg_at_10')
|
| 45 |
assert df.shape[0] == 4
|
| 46 |
# the results contain only one embedding model
|
|
@@ -55,7 +57,7 @@ def test_get_leaderboard_df():
|
|
| 55 |
|
| 56 |
def test_get_leaderboard_df_long_doc():
|
| 57 |
results_path = cur_fp.parents[2] / "toydata" / "test_results"
|
| 58 |
-
raw_data =
|
| 59 |
df = get_leaderboard_df(raw_data, 'long-doc', 'ndcg_at_1')
|
| 60 |
assert df.shape[0] == 2
|
| 61 |
# the results contain only one embedding model
|
|
|
|
| 1 |
from pathlib import Path
|
| 2 |
|
| 3 |
+
from src.read_evals import load_raw_eval_results
|
| 4 |
+
from src.utils import get_leaderboard_df
|
| 5 |
+
from src.models import FullEvalResult
|
| 6 |
|
| 7 |
cur_fp = Path(__file__)
|
| 8 |
|
|
|
|
| 31 |
|
| 32 |
def test_get_raw_eval_results():
|
| 33 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
| 34 |
+
results = load_raw_eval_results(results_path)
|
| 35 |
# only load the latest results
|
| 36 |
assert len(results) == 4
|
| 37 |
assert results[0].eval_name == "bge-base-en-v1.5_NoReranker"
|
|
|
|
| 42 |
|
| 43 |
def test_get_leaderboard_df():
|
| 44 |
results_path = cur_fp.parents[2] / "toydata" / "eval_results" / "AIR-Bench_24.04"
|
| 45 |
+
raw_data = load_raw_eval_results(results_path)
|
| 46 |
df = get_leaderboard_df(raw_data, 'qa', 'ndcg_at_10')
|
| 47 |
assert df.shape[0] == 4
|
| 48 |
# the results contain only one embedding model
|
|
|
|
| 57 |
|
| 58 |
def test_get_leaderboard_df_long_doc():
|
| 59 |
results_path = cur_fp.parents[2] / "toydata" / "test_results"
|
| 60 |
+
raw_data = load_raw_eval_results(results_path)
|
| 61 |
df = get_leaderboard_df(raw_data, 'long-doc', 'ndcg_at_1')
|
| 62 |
assert df.shape[0] == 2
|
| 63 |
# the results contain only one embedding model
|
tests/test_utils.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import pytest
|
| 3 |
|
| 4 |
-
from src.utils import filter_models, search_table, filter_queries, select_columns, update_table_long_doc, get_iso_format_timestamp, get_default_cols
|
| 5 |
-
from
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
@pytest.fixture
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import pytest
|
| 3 |
|
| 4 |
+
from src.utils import filter_models, search_table, filter_queries, select_columns, update_table_long_doc, get_iso_format_timestamp, get_default_cols
|
| 5 |
+
from app import update_table
|
| 6 |
+
from src.envs import COL_NAME_AVG, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RANK, COL_NAME_REVISION, \
|
| 7 |
+
COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
|
| 8 |
|
| 9 |
|
| 10 |
@pytest.fixture
|