Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline | |
| import os | |
| import spaces | |
| # Constants | |
| #SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1" | |
| # Initialize the model | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "playgroundai/playground-v2.5-1024px-aesthetic", | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| ).to("cuda") | |
| # Safety Checker (if necessary) | |
| #if SAFETY_CHECKER: | |
| # Implement or import the safety checker code here | |
| def generate_image(prompt, num_inference_steps=50, guidance_scale=7): | |
| # Generate image | |
| results = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale) | |
| # Safety check (if necessary) | |
| #if SAFETY_CHECKER: | |
| # Implement the safety check logic here | |
| #pass | |
| return results.images[0] | |
| import gradio as gr | |
| # Gradio Interface | |
| description = """ | |
| This demo utilizes the playgroundai/playground-v2.5-1024px-aesthetic by Playground, which is a text-to-image generative model capable of producing high-quality images. | |
| As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Playground-V2.5 Demo") | |
| gr.Markdown(description) | |
| # Prompt on its own row | |
| with gr.Row(): | |
| prompt = gr.Textbox(label='Enter your image prompt') | |
| # Sliders for inference steps and guidance scale on another row | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider(minimum=1, maximum=75, step=1, label='Number of Inference Steps', value=50) | |
| guidance_scale = gr.Slider(minimum=1, maximum=10, step=0.1, label='Guidance Scale', value=5) | |
| # Submit button | |
| submit = gr.Button('Generate Image') | |
| # Image output at the bottom | |
| img = gr.Image(label='Generated Image') | |
| submit.click( | |
| fn=generate_image, # This function needs to be defined to generate the image based on the inputs | |
| inputs=[prompt, num_inference_steps, guidance_scale], | |
| outputs=img, | |
| ) | |
| demo.queue().launch() |