Spaces:
Runtime error
Runtime error
Commit
·
0d1bfaa
1
Parent(s):
d79400e
Initial integration
Browse files- app.py +61 -1
- rl_agent/test_env.py +4 -18
app.py
CHANGED
|
@@ -3,14 +3,74 @@ import pandas as pd
|
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
from plotly.subplots import make_subplots
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import datetime
|
| 8 |
def get_time():
|
| 9 |
return datetime.datetime.now().time()
|
| 10 |
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
counter = 0
|
| 13 |
-
start_year, test_year =
|
| 14 |
datetime_column = "Date"
|
| 15 |
df_data = pd.read_csv(f"./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023_processed.csv")
|
| 16 |
df_data[datetime_column] = pd.to_datetime(df_data[datetime_column], format="%Y-%m-%d") # %d.%m.%Y %H:%M:%S.000 GMT%z
|
|
|
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
from plotly.subplots import make_subplots
|
| 5 |
|
| 6 |
+
from env import Environment
|
| 7 |
+
from policy import Policy
|
| 8 |
+
from utils import myOptimizer
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from collections import OrderedDict
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
|
| 15 |
import datetime
|
| 16 |
def get_time():
|
| 17 |
return datetime.datetime.now().time()
|
| 18 |
|
| 19 |
|
| 20 |
+
def init_rl_agent(train, test):
|
| 21 |
+
date_split = '01.09.2022 00:00:00.000 GMT-0500'
|
| 22 |
+
|
| 23 |
+
learning_rate = 0.001
|
| 24 |
+
first_momentum = 0.0
|
| 25 |
+
second_momentum = 0.0001
|
| 26 |
+
transaction_cost = 0.0001
|
| 27 |
+
adaptation_rate = 0.01
|
| 28 |
+
state_size = 15
|
| 29 |
+
equity = 1.0
|
| 30 |
+
|
| 31 |
+
agent = Policy(input_channels=state_size)
|
| 32 |
+
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
| 33 |
+
|
| 34 |
+
history = []
|
| 35 |
+
for i in range(1, state_size):
|
| 36 |
+
c = train.iloc[i, :]['Close'] - train.iloc[i - 1, :]['Close']
|
| 37 |
+
history.append(c)
|
| 38 |
+
|
| 39 |
+
env = Environment(train, history=history, state_size=state_size)
|
| 40 |
+
observation = env.reset()
|
| 41 |
+
|
| 42 |
+
return env, agent, optimizer, state_size, observation, date_split, equity
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def make_prediction(env, agent, optimizer, state_size, observation, data, date_split, equity):
|
| 46 |
+
model_gradients_history = dict()
|
| 47 |
+
checkpoint = OrderedDict()
|
| 48 |
+
|
| 49 |
+
for name, param in agent.named_parameters():
|
| 50 |
+
model_gradients_history.update({name: torch.zeros_like(param)})
|
| 51 |
+
|
| 52 |
+
for i in tqdm(range(state_size, len(data[:date_split]))):
|
| 53 |
+
observation = torch.as_tensor(observation).float()
|
| 54 |
+
action = agent(observation)
|
| 55 |
+
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
| 56 |
+
|
| 57 |
+
action.backward()
|
| 58 |
+
|
| 59 |
+
for name, param in agent.named_parameters():
|
| 60 |
+
grad_n = param.grad
|
| 61 |
+
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 62 |
+
checkpoint[name] = param
|
| 63 |
+
model_gradients_history.update({name: grad_n})
|
| 64 |
+
|
| 65 |
+
if i > 10000:
|
| 66 |
+
equity += env.profit
|
| 67 |
+
|
| 68 |
+
optimizer.after_step(reward)
|
| 69 |
+
agent.load_state_dict(checkpoint)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
counter = 0
|
| 73 |
+
start_year, test_year = 2021, 2023
|
| 74 |
datetime_column = "Date"
|
| 75 |
df_data = pd.read_csv(f"./data/EURUSD_Candlestick_1_M_BID_01.01.{start_year}-04.02.2023_processed.csv")
|
| 76 |
df_data[datetime_column] = pd.to_datetime(df_data[datetime_column], format="%Y-%m-%d") # %d.%m.%Y %H:%M:%S.000 GMT%z
|
rl_agent/test_env.py
CHANGED
|
@@ -12,6 +12,7 @@ import matplotlib.pyplot as plt
|
|
| 12 |
from tqdm import tqdm
|
| 13 |
from torch.utils.tensorboard import SummaryWriter
|
| 14 |
|
|
|
|
| 15 |
if __name__ == "__main__":
|
| 16 |
writer = SummaryWriter('runs/new_data_ex_7')
|
| 17 |
|
|
@@ -21,14 +22,13 @@ if __name__ == "__main__":
|
|
| 21 |
data = data.set_index('Local time')
|
| 22 |
print(data.index.min(), data.index.max())
|
| 23 |
|
| 24 |
-
date_split = '
|
| 25 |
# date_split = '25.08.2022 04:30:00.000 GMT-0500' # 30 min
|
| 26 |
# date_split = '03.02.2023 15:30:00.000 GMT-0600' # 30 min
|
| 27 |
|
| 28 |
train = data[:date_split]
|
| 29 |
test = data[date_split:]
|
| 30 |
|
| 31 |
-
|
| 32 |
learning_rate = 0.001
|
| 33 |
first_momentum = 0.0
|
| 34 |
second_momentum = 0.0001
|
|
@@ -40,8 +40,6 @@ if __name__ == "__main__":
|
|
| 40 |
agent = Policy(input_channels=state_size)
|
| 41 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
history = []
|
| 46 |
for i in range(1, state_size):
|
| 47 |
c = train.iloc[i, :]['Close'] - train.iloc[i-1, :]['Close']
|
|
@@ -49,7 +47,6 @@ if __name__ == "__main__":
|
|
| 49 |
|
| 50 |
env = Environment(train, history=history, state_size=state_size)
|
| 51 |
observation = env.reset()
|
| 52 |
-
|
| 53 |
|
| 54 |
model_gradients_history = dict()
|
| 55 |
checkpoint = OrderedDict()
|
|
@@ -57,20 +54,14 @@ if __name__ == "__main__":
|
|
| 57 |
for name, param in agent.named_parameters():
|
| 58 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
for i in tqdm(range(state_size, len(train))):
|
| 63 |
observation = torch.as_tensor(observation).float()
|
| 64 |
action = agent(observation)
|
| 65 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
action.backward()
|
| 71 |
|
| 72 |
for name, param in agent.named_parameters():
|
| 73 |
-
|
| 74 |
grad_n = param.grad
|
| 75 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 76 |
checkpoint[name] = param
|
|
@@ -95,7 +86,6 @@ if __name__ == "__main__":
|
|
| 95 |
|
| 96 |
# env = Environment(test, history=history, state_size=state_size)
|
| 97 |
# observation = env.reset()
|
| 98 |
-
|
| 99 |
|
| 100 |
# model_gradients_history = dict()
|
| 101 |
# checkpoint = OrderedDict()
|
|
@@ -107,14 +97,9 @@ if __name__ == "__main__":
|
|
| 107 |
# observation = torch.as_tensor(observation).float()
|
| 108 |
# action = agent(observation)
|
| 109 |
# observation, reward, _ = env.step(action.data.numpy())
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
# action.backward()
|
| 115 |
|
| 116 |
# for name, param in agent.named_parameters():
|
| 117 |
-
|
| 118 |
# grad_n = param.grad
|
| 119 |
# param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 120 |
# checkpoint[name] = param
|
|
@@ -123,4 +108,5 @@ if __name__ == "__main__":
|
|
| 123 |
# optimizer.after_step(reward)
|
| 124 |
# agent.load_state_dict(checkpoint)
|
| 125 |
|
| 126 |
-
print(env.profits)
|
|
|
|
|
|
| 12 |
from tqdm import tqdm
|
| 13 |
from torch.utils.tensorboard import SummaryWriter
|
| 14 |
|
| 15 |
+
|
| 16 |
if __name__ == "__main__":
|
| 17 |
writer = SummaryWriter('runs/new_data_ex_7')
|
| 18 |
|
|
|
|
| 22 |
data = data.set_index('Local time')
|
| 23 |
print(data.index.min(), data.index.max())
|
| 24 |
|
| 25 |
+
date_split = '01.09.2022 00:00:00.000 GMT-0500'
|
| 26 |
# date_split = '25.08.2022 04:30:00.000 GMT-0500' # 30 min
|
| 27 |
# date_split = '03.02.2023 15:30:00.000 GMT-0600' # 30 min
|
| 28 |
|
| 29 |
train = data[:date_split]
|
| 30 |
test = data[date_split:]
|
| 31 |
|
|
|
|
| 32 |
learning_rate = 0.001
|
| 33 |
first_momentum = 0.0
|
| 34 |
second_momentum = 0.0001
|
|
|
|
| 40 |
agent = Policy(input_channels=state_size)
|
| 41 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
| 42 |
|
|
|
|
|
|
|
| 43 |
history = []
|
| 44 |
for i in range(1, state_size):
|
| 45 |
c = train.iloc[i, :]['Close'] - train.iloc[i-1, :]['Close']
|
|
|
|
| 47 |
|
| 48 |
env = Environment(train, history=history, state_size=state_size)
|
| 49 |
observation = env.reset()
|
|
|
|
| 50 |
|
| 51 |
model_gradients_history = dict()
|
| 52 |
checkpoint = OrderedDict()
|
|
|
|
| 54 |
for name, param in agent.named_parameters():
|
| 55 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
| 56 |
|
|
|
|
|
|
|
| 57 |
for i in tqdm(range(state_size, len(train))):
|
| 58 |
observation = torch.as_tensor(observation).float()
|
| 59 |
action = agent(observation)
|
| 60 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
action.backward()
|
| 63 |
|
| 64 |
for name, param in agent.named_parameters():
|
|
|
|
| 65 |
grad_n = param.grad
|
| 66 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 67 |
checkpoint[name] = param
|
|
|
|
| 86 |
|
| 87 |
# env = Environment(test, history=history, state_size=state_size)
|
| 88 |
# observation = env.reset()
|
|
|
|
| 89 |
|
| 90 |
# model_gradients_history = dict()
|
| 91 |
# checkpoint = OrderedDict()
|
|
|
|
| 97 |
# observation = torch.as_tensor(observation).float()
|
| 98 |
# action = agent(observation)
|
| 99 |
# observation, reward, _ = env.step(action.data.numpy())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
# action.backward()
|
| 101 |
|
| 102 |
# for name, param in agent.named_parameters():
|
|
|
|
| 103 |
# grad_n = param.grad
|
| 104 |
# param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 105 |
# checkpoint[name] = param
|
|
|
|
| 108 |
# optimizer.after_step(reward)
|
| 109 |
# agent.load_state_dict(checkpoint)
|
| 110 |
|
| 111 |
+
print(env.profits)
|
| 112 |
+
|