Spaces:
Runtime error
Runtime error
add equity
Browse files- rl_agent/env.py +3 -2
- rl_agent/test_env.py +42 -30
rl_agent/env.py
CHANGED
|
@@ -29,14 +29,15 @@ class Environment:
|
|
| 29 |
|
| 30 |
Zt = self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']
|
| 31 |
reward = (self.position_value * Zt) - (self.cost_rate * cost_amount)
|
| 32 |
-
profit = self.position_value * Zt
|
| 33 |
-
self.profits += profit
|
| 34 |
|
| 35 |
# set next time
|
| 36 |
self.t += 1
|
| 37 |
self.position_value = act
|
| 38 |
|
| 39 |
self.history.pop(0)
|
|
|
|
| 40 |
self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']) # the price being traded
|
| 41 |
|
| 42 |
self.position_value = self.position_value.item()
|
|
|
|
| 29 |
|
| 30 |
Zt = self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']
|
| 31 |
reward = (self.position_value * Zt) - (self.cost_rate * cost_amount)
|
| 32 |
+
self.profit = self.position_value * Zt
|
| 33 |
+
self.profits += self.profit
|
| 34 |
|
| 35 |
# set next time
|
| 36 |
self.t += 1
|
| 37 |
self.position_value = act
|
| 38 |
|
| 39 |
self.history.pop(0)
|
| 40 |
+
|
| 41 |
self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close']) # the price being traded
|
| 42 |
|
| 43 |
self.position_value = self.position_value.item()
|
rl_agent/test_env.py
CHANGED
|
@@ -9,18 +9,26 @@ from collections import OrderedDict
|
|
| 9 |
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
if __name__ == "__main__":
|
|
|
|
| 13 |
|
| 14 |
-
data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
|
|
|
|
| 15 |
# data['Local time'] = pd.to_datetime(data['Local time'])
|
| 16 |
data = data.set_index('Local time')
|
| 17 |
print(data.index.min(), data.index.max())
|
| 18 |
|
| 19 |
-
date_split = '19.09.2022 17:55:00.000 GMT-0500'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
train = data[:date_split]
|
| 21 |
test = data[date_split:]
|
| 22 |
|
| 23 |
-
initial_money = 10.0
|
| 24 |
|
| 25 |
learning_rate = 0.001
|
| 26 |
first_momentum = 0.0
|
|
@@ -28,6 +36,7 @@ if __name__ == "__main__":
|
|
| 28 |
transaction_cost = 0.0001
|
| 29 |
adaptation_rate = 0.01
|
| 30 |
state_size = 15
|
|
|
|
| 31 |
|
| 32 |
agent = Policy(input_channels=state_size)
|
| 33 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
|
@@ -50,10 +59,8 @@ if __name__ == "__main__":
|
|
| 50 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
| 51 |
|
| 52 |
|
| 53 |
-
p = []
|
| 54 |
-
|
| 55 |
|
| 56 |
-
for
|
| 57 |
observation = torch.as_tensor(observation).float()
|
| 58 |
action = agent(observation)
|
| 59 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
|
@@ -69,47 +76,52 @@ if __name__ == "__main__":
|
|
| 69 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 70 |
checkpoint[name] = param
|
| 71 |
model_gradients_history.update({name: grad_n})
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
optimizer.after_step(reward)
|
| 75 |
agent.load_state_dict(checkpoint)
|
| 76 |
|
| 77 |
###########
|
| 78 |
###########
|
| 79 |
|
| 80 |
-
history = []
|
| 81 |
-
for i in range(1, state_size):
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
-
env = Environment(test, history=history, state_size=state_size)
|
| 86 |
-
observation = env.reset()
|
| 87 |
|
| 88 |
|
| 89 |
-
model_gradients_history = dict()
|
| 90 |
-
checkpoint = OrderedDict()
|
| 91 |
|
| 92 |
-
for name, param in agent.named_parameters():
|
| 93 |
-
|
| 94 |
|
| 95 |
-
for _ in range(state_size,
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
|
| 101 |
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
print(env.profits)
|
|
|
|
| 9 |
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 14 |
+
|
| 15 |
if __name__ == "__main__":
|
| 16 |
+
writer = SummaryWriter('runs/new_data_ex_7')
|
| 17 |
|
| 18 |
+
# data = pd.read_csv('./data/EURUSD_Candlestick_1_M_BID_01.01.2021-04.02.2023.csv')
|
| 19 |
+
data = pd.read_csv('./data/EURUSD_Candlestick_30_M_BID_01.01.2021-04.02.2023.csv')
|
| 20 |
# data['Local time'] = pd.to_datetime(data['Local time'])
|
| 21 |
data = data.set_index('Local time')
|
| 22 |
print(data.index.min(), data.index.max())
|
| 23 |
|
| 24 |
+
# date_split = '19.09.2022 17:55:00.000 GMT-0500'
|
| 25 |
+
# date_split = '25.08.2022 04:30:00.000 GMT-0500' # 30 min
|
| 26 |
+
|
| 27 |
+
date_split = '03.02.2023 15:30:00.000 GMT-0600' # 30 min
|
| 28 |
+
|
| 29 |
train = data[:date_split]
|
| 30 |
test = data[date_split:]
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
learning_rate = 0.001
|
| 34 |
first_momentum = 0.0
|
|
|
|
| 36 |
transaction_cost = 0.0001
|
| 37 |
adaptation_rate = 0.01
|
| 38 |
state_size = 15
|
| 39 |
+
equity = 1.0
|
| 40 |
|
| 41 |
agent = Policy(input_channels=state_size)
|
| 42 |
optimizer = myOptimizer(learning_rate, first_momentum, second_momentum, adaptation_rate, transaction_cost)
|
|
|
|
| 59 |
model_gradients_history.update({name: torch.zeros_like(param)})
|
| 60 |
|
| 61 |
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
for i in tqdm(range(state_size, len(train))):
|
| 64 |
observation = torch.as_tensor(observation).float()
|
| 65 |
action = agent(observation)
|
| 66 |
observation, reward, _ = env.step(action.data.to("cpu").numpy())
|
|
|
|
| 76 |
param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 77 |
checkpoint[name] = param
|
| 78 |
model_gradients_history.update({name: grad_n})
|
| 79 |
+
|
| 80 |
+
if i > 10000:
|
| 81 |
+
equity += env.profit
|
| 82 |
+
writer.add_scalar('equity', equity, i)
|
| 83 |
+
else:
|
| 84 |
+
writer.add_scalar('equity', 1.0, i)
|
| 85 |
+
|
| 86 |
optimizer.after_step(reward)
|
| 87 |
agent.load_state_dict(checkpoint)
|
| 88 |
|
| 89 |
###########
|
| 90 |
###########
|
| 91 |
|
| 92 |
+
# history = []
|
| 93 |
+
# for i in range(1, state_size):
|
| 94 |
+
# c = test.iloc[i, :]['Close'] - test.iloc[i-1, :]['Close']
|
| 95 |
+
# history.append(c)
|
| 96 |
|
| 97 |
+
# env = Environment(test, history=history, state_size=state_size)
|
| 98 |
+
# observation = env.reset()
|
| 99 |
|
| 100 |
|
| 101 |
+
# model_gradients_history = dict()
|
| 102 |
+
# checkpoint = OrderedDict()
|
| 103 |
|
| 104 |
+
# for name, param in agent.named_parameters():
|
| 105 |
+
# model_gradients_history.update({name: torch.zeros_like(param)})
|
| 106 |
|
| 107 |
+
# for _ in tqdm(range(state_size, len(test))):
|
| 108 |
+
# observation = torch.as_tensor(observation).float()
|
| 109 |
+
# action = agent(observation)
|
| 110 |
+
# observation, reward, _ = env.step(action.data.numpy())
|
| 111 |
|
| 112 |
|
| 113 |
|
| 114 |
|
| 115 |
+
# action.backward()
|
| 116 |
|
| 117 |
+
# for name, param in agent.named_parameters():
|
| 118 |
|
| 119 |
+
# grad_n = param.grad
|
| 120 |
+
# param = param + optimizer.step(grad_n, reward, observation[-1], model_gradients_history[name])
|
| 121 |
+
# checkpoint[name] = param
|
| 122 |
+
# model_gradients_history.update({name: grad_n})
|
| 123 |
|
| 124 |
+
# optimizer.after_step(reward)
|
| 125 |
+
# agent.load_state_dict(checkpoint)
|
| 126 |
|
| 127 |
print(env.profits)
|