Spaces:
Running
Running
File size: 57,808 Bytes
fe69f5e 268de28 fe69f5e 268de28 fe69f5e 1d5163f 268de28 782e717 268de28 fe69f5e 268de28 fe69f5e 268de28 fe69f5e 268de28 fe69f5e 268de28 fe69f5e 268de28 fe69f5e 268de28 fe69f5e 268de28 fe69f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 |
import base64
import hashlib
import json
import os
import re
import subprocess
from typing import Any, Literal, TypedDict, cast
import models
from python.helpers import runtime, whisper, defer, git
from . import files, dotenv
from python.helpers.print_style import PrintStyle
from python.helpers.providers import get_providers
class Settings(TypedDict):
version: str
chat_model_provider: str
chat_model_name: str
chat_model_api_base: str
chat_model_kwargs: dict[str, str]
chat_model_ctx_length: int
chat_model_ctx_history: float
chat_model_vision: bool
chat_model_rl_requests: int
chat_model_rl_input: int
chat_model_rl_output: int
util_model_provider: str
util_model_name: str
util_model_api_base: str
util_model_kwargs: dict[str, str]
util_model_ctx_length: int
util_model_ctx_input: float
util_model_rl_requests: int
util_model_rl_input: int
util_model_rl_output: int
embed_model_provider: str
embed_model_name: str
embed_model_api_base: str
embed_model_kwargs: dict[str, str]
embed_model_rl_requests: int
embed_model_rl_input: int
browser_model_provider: str
browser_model_name: str
browser_model_api_base: str
browser_model_vision: bool
browser_model_rl_requests: int
browser_model_rl_input: int
browser_model_rl_output: int
browser_model_kwargs: dict[str, str]
agent_profile: str
agent_memory_subdir: str
agent_knowledge_subdir: str
memory_recall_enabled: bool
memory_recall_delayed: bool
memory_recall_interval: int
memory_recall_history_len: int
memory_recall_memories_max_search: int
memory_recall_solutions_max_search: int
memory_recall_memories_max_result: int
memory_recall_solutions_max_result: int
memory_recall_similarity_threshold: float
memory_recall_query_prep: bool
memory_recall_post_filter: bool
memory_memorize_enabled: bool
memory_memorize_consolidation: bool
memory_memorize_replace_threshold: float
api_keys: dict[str, str]
auth_login: str
auth_password: str
root_password: str
rfc_auto_docker: bool
rfc_url: str
rfc_password: str
rfc_port_http: int
rfc_port_ssh: int
shell_interface: Literal['local','ssh']
stt_model_size: str
stt_language: str
stt_silence_threshold: float
stt_silence_duration: int
stt_waiting_timeout: int
tts_kokoro: bool
mcp_servers: str
mcp_client_init_timeout: int
mcp_client_tool_timeout: int
mcp_server_enabled: bool
mcp_server_token: str
a2a_server_enabled: bool
class PartialSettings(Settings, total=False):
pass
class FieldOption(TypedDict):
value: str
label: str
class SettingsField(TypedDict, total=False):
id: str
title: str
description: str
type: Literal[
"text",
"number",
"select",
"range",
"textarea",
"password",
"switch",
"button",
"html",
]
value: Any
min: float
max: float
step: float
hidden: bool
options: list[FieldOption]
class SettingsSection(TypedDict, total=False):
id: str
title: str
description: str
fields: list[SettingsField]
tab: str # Indicates which tab this section belongs to
class SettingsOutput(TypedDict):
sections: list[SettingsSection]
PASSWORD_PLACEHOLDER = "****PSWD****"
API_KEY_PLACEHOLDER = "************"
SETTINGS_FILE = files.get_abs_path("tmp/settings.json")
_settings: Settings | None = None
def convert_out(settings: Settings) -> SettingsOutput:
default_settings = get_default_settings()
# main model section
chat_model_fields: list[SettingsField] = []
chat_model_fields.append(
{
"id": "chat_model_provider",
"title": "Chat model provider",
"description": "Select provider for main chat model used by Agent Zero",
"type": "select",
"value": settings["chat_model_provider"],
"options": cast(list[FieldOption], get_providers("chat")),
}
)
chat_model_fields.append(
{
"id": "chat_model_name",
"title": "Chat model name",
"description": "Exact name of model from selected provider",
"type": "text",
"value": settings["chat_model_name"],
}
)
chat_model_fields.append(
{
"id": "chat_model_api_base",
"title": "Chat model API base URL",
"description": "API base URL for main chat model. Leave empty for default. Only relevant for Azure, local and custom (other) providers.",
"type": "text",
"value": settings["chat_model_api_base"],
}
)
chat_model_fields.append(
{
"id": "chat_model_ctx_length",
"title": "Chat model context length",
"description": "Maximum number of tokens in the context window for LLM. System prompt, chat history, RAG and response all count towards this limit.",
"type": "number",
"value": settings["chat_model_ctx_length"],
}
)
chat_model_fields.append(
{
"id": "chat_model_ctx_history",
"title": "Context window space for chat history",
"description": "Portion of context window dedicated to chat history visible to the agent. Chat history will automatically be optimized to fit. Smaller size will result in shorter and more summarized history. The remaining space will be used for system prompt, RAG and response.",
"type": "range",
"min": 0.01,
"max": 1,
"step": 0.01,
"value": settings["chat_model_ctx_history"],
}
)
chat_model_fields.append(
{
"id": "chat_model_vision",
"title": "Supports Vision",
"description": "Models capable of Vision can for example natively see the content of image attachments.",
"type": "switch",
"value": settings["chat_model_vision"],
}
)
chat_model_fields.append(
{
"id": "chat_model_rl_requests",
"title": "Requests per minute limit",
"description": "Limits the number of requests per minute to the chat model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["chat_model_rl_requests"],
}
)
chat_model_fields.append(
{
"id": "chat_model_rl_input",
"title": "Input tokens per minute limit",
"description": "Limits the number of input tokens per minute to the chat model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["chat_model_rl_input"],
}
)
chat_model_fields.append(
{
"id": "chat_model_rl_output",
"title": "Output tokens per minute limit",
"description": "Limits the number of output tokens per minute to the chat model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["chat_model_rl_output"],
}
)
chat_model_fields.append(
{
"id": "chat_model_kwargs",
"title": "Chat model additional parameters",
"description": "Any other parameters supported by <a href='https://docs.litellm.ai/docs/set_keys' target='_blank'>LiteLLM</a>. Format is KEY=VALUE on individual lines, just like .env file.",
"type": "textarea",
"value": _dict_to_env(settings["chat_model_kwargs"]),
}
)
chat_model_section: SettingsSection = {
"id": "chat_model",
"title": "Chat Model",
"description": "Selection and settings for main chat model used by Agent Zero",
"fields": chat_model_fields,
"tab": "agent",
}
# main model section
util_model_fields: list[SettingsField] = []
util_model_fields.append(
{
"id": "util_model_provider",
"title": "Utility model provider",
"description": "Select provider for utility model used by the framework",
"type": "select",
"value": settings["util_model_provider"],
"options": cast(list[FieldOption], get_providers("chat")),
}
)
util_model_fields.append(
{
"id": "util_model_name",
"title": "Utility model name",
"description": "Exact name of model from selected provider",
"type": "text",
"value": settings["util_model_name"],
}
)
util_model_fields.append(
{
"id": "util_model_api_base",
"title": "Utility model API base URL",
"description": "API base URL for utility model. Leave empty for default. Only relevant for Azure, local and custom (other) providers.",
"type": "text",
"value": settings["util_model_api_base"],
}
)
util_model_fields.append(
{
"id": "util_model_rl_requests",
"title": "Requests per minute limit",
"description": "Limits the number of requests per minute to the utility model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["util_model_rl_requests"],
}
)
util_model_fields.append(
{
"id": "util_model_rl_input",
"title": "Input tokens per minute limit",
"description": "Limits the number of input tokens per minute to the utility model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["util_model_rl_input"],
}
)
util_model_fields.append(
{
"id": "util_model_rl_output",
"title": "Output tokens per minute limit",
"description": "Limits the number of output tokens per minute to the utility model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["util_model_rl_output"],
}
)
util_model_fields.append(
{
"id": "util_model_kwargs",
"title": "Utility model additional parameters",
"description": "Any other parameters supported by <a href='https://docs.litellm.ai/docs/set_keys' target='_blank'>LiteLLM</a>. Format is KEY=VALUE on individual lines, just like .env file.",
"type": "textarea",
"value": _dict_to_env(settings["util_model_kwargs"]),
}
)
util_model_section: SettingsSection = {
"id": "util_model",
"title": "Utility model",
"description": "Smaller, cheaper, faster model for handling utility tasks like organizing memory, preparing prompts, summarizing.",
"fields": util_model_fields,
"tab": "agent",
}
# embedding model section
embed_model_fields: list[SettingsField] = []
embed_model_fields.append(
{
"id": "embed_model_provider",
"title": "Embedding model provider",
"description": "Select provider for embedding model used by the framework",
"type": "select",
"value": settings["embed_model_provider"],
"options": cast(list[FieldOption], get_providers("embedding")),
}
)
embed_model_fields.append(
{
"id": "embed_model_name",
"title": "Embedding model name",
"description": "Exact name of model from selected provider",
"type": "text",
"value": settings["embed_model_name"],
}
)
embed_model_fields.append(
{
"id": "embed_model_api_base",
"title": "Embedding model API base URL",
"description": "API base URL for embedding model. Leave empty for default. Only relevant for Azure, local and custom (other) providers.",
"type": "text",
"value": settings["embed_model_api_base"],
}
)
embed_model_fields.append(
{
"id": "embed_model_rl_requests",
"title": "Requests per minute limit",
"description": "Limits the number of requests per minute to the embedding model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["embed_model_rl_requests"],
}
)
embed_model_fields.append(
{
"id": "embed_model_rl_input",
"title": "Input tokens per minute limit",
"description": "Limits the number of input tokens per minute to the embedding model. Waits if the limit is exceeded. Set to 0 to disable rate limiting.",
"type": "number",
"value": settings["embed_model_rl_input"],
}
)
embed_model_fields.append(
{
"id": "embed_model_kwargs",
"title": "Embedding model additional parameters",
"description": "Any other parameters supported by <a href='https://docs.litellm.ai/docs/set_keys' target='_blank'>LiteLLM</a>. Format is KEY=VALUE on individual lines, just like .env file.",
"type": "textarea",
"value": _dict_to_env(settings["embed_model_kwargs"]),
}
)
embed_model_section: SettingsSection = {
"id": "embed_model",
"title": "Embedding Model",
"description": f"Settings for the embedding model used by Agent Zero.<br><h4>⚠️ No need to change</h4>The default HuggingFace model {default_settings['embed_model_name']} is preloaded and runs locally within the docker container and there's no need to change it unless you have a specific requirements for embedding.",
"fields": embed_model_fields,
"tab": "agent",
}
# embedding model section
browser_model_fields: list[SettingsField] = []
browser_model_fields.append(
{
"id": "browser_model_provider",
"title": "Web Browser model provider",
"description": "Select provider for web browser model used by <a href='https://github.com/browser-use/browser-use' target='_blank'>browser-use</a> framework",
"type": "select",
"value": settings["browser_model_provider"],
"options": cast(list[FieldOption], get_providers("chat")),
}
)
browser_model_fields.append(
{
"id": "browser_model_name",
"title": "Web Browser model name",
"description": "Exact name of model from selected provider",
"type": "text",
"value": settings["browser_model_name"],
}
)
browser_model_fields.append(
{
"id": "browser_model_api_base",
"title": "Web Browser model API base URL",
"description": "API base URL for web browser model. Leave empty for default. Only relevant for Azure, local and custom (other) providers.",
"type": "text",
"value": settings["browser_model_api_base"],
}
)
browser_model_fields.append(
{
"id": "browser_model_vision",
"title": "Use Vision",
"description": "Models capable of Vision can use it to analyze web pages from screenshots. Increases quality but also token usage.",
"type": "switch",
"value": settings["browser_model_vision"],
}
)
browser_model_fields.append(
{
"id": "browser_model_rl_requests",
"title": "Web Browser model rate limit requests",
"description": "Rate limit requests for web browser model.",
"type": "number",
"value": settings["browser_model_rl_requests"],
}
)
browser_model_fields.append(
{
"id": "browser_model_rl_input",
"title": "Web Browser model rate limit input",
"description": "Rate limit input for web browser model.",
"type": "number",
"value": settings["browser_model_rl_input"],
}
)
browser_model_fields.append(
{
"id": "browser_model_rl_output",
"title": "Web Browser model rate limit output",
"description": "Rate limit output for web browser model.",
"type": "number",
"value": settings["browser_model_rl_output"],
}
)
browser_model_fields.append(
{
"id": "browser_model_kwargs",
"title": "Web Browser model additional parameters",
"description": "Any other parameters supported by <a href='https://docs.litellm.ai/docs/set_keys' target='_blank'>LiteLLM</a>. Format is KEY=VALUE on individual lines, just like .env file.",
"type": "textarea",
"value": _dict_to_env(settings["browser_model_kwargs"]),
}
)
browser_model_section: SettingsSection = {
"id": "browser_model",
"title": "Web Browser Model",
"description": "Settings for the web browser model. Agent Zero uses <a href='https://github.com/browser-use/browser-use' target='_blank'>browser-use</a> agentic framework to handle web interactions.",
"fields": browser_model_fields,
"tab": "agent",
}
# basic auth section
auth_fields: list[SettingsField] = []
auth_fields.append(
{
"id": "auth_login",
"title": "UI Login",
"description": "Set user name for web UI",
"type": "text",
"value": dotenv.get_dotenv_value(dotenv.KEY_AUTH_LOGIN) or "",
}
)
auth_fields.append(
{
"id": "auth_password",
"title": "UI Password",
"description": "Set user password for web UI",
"type": "password",
"value": (
PASSWORD_PLACEHOLDER
if dotenv.get_dotenv_value(dotenv.KEY_AUTH_PASSWORD)
else ""
),
}
)
if runtime.is_dockerized():
auth_fields.append(
{
"id": "root_password",
"title": "root Password",
"description": "Change linux root password in docker container. This password can be used for SSH access. Original password was randomly generated during setup.",
"type": "password",
"value": "",
}
)
auth_section: SettingsSection = {
"id": "auth",
"title": "Authentication",
"description": "Settings for authentication to use Agent Zero Web UI.",
"fields": auth_fields,
"tab": "external",
}
# api keys model section
api_keys_fields: list[SettingsField] = []
# Collect unique providers from both chat and embedding sections
providers_seen: set[str] = set()
for p_type in ("chat", "embedding"):
for provider in get_providers(p_type):
pid_lower = provider["value"].lower()
if pid_lower in providers_seen:
continue
providers_seen.add(pid_lower)
api_keys_fields.append(
_get_api_key_field(settings, pid_lower, provider["label"])
)
api_keys_section: SettingsSection = {
"id": "api_keys",
"title": "API Keys",
"description": "API keys for model providers and services used by Agent Zero. You can set multiple API keys separated by a comma (,). They will be used in round-robin fashion.",
"fields": api_keys_fields,
"tab": "external",
}
# Agent config section
agent_fields: list[SettingsField] = []
agent_fields.append(
{
"id": "agent_profile",
"title": "Default agent profile",
"description": "Subdirectory of /agents folder to be used by default agent no. 0. Subordinate agents can be spawned with other profiles, that is on their superior agent to decide. This setting affects the behaviour of the top level agent you communicate with.",
"type": "select",
"value": settings["agent_profile"],
"options": [
{"value": subdir, "label": subdir}
for subdir in files.get_subdirectories("agents")
if subdir != "_example"
],
}
)
agent_fields.append(
{
"id": "agent_knowledge_subdir",
"title": "Knowledge subdirectory",
"description": "Subdirectory of /knowledge folder to use for agent knowledge import. 'default' subfolder is always imported and contains framework knowledge.",
"type": "select",
"value": settings["agent_knowledge_subdir"],
"options": [
{"value": subdir, "label": subdir}
for subdir in files.get_subdirectories("knowledge", exclude="default")
],
}
)
agent_section: SettingsSection = {
"id": "agent",
"title": "Agent Config",
"description": "Agent parameters.",
"fields": agent_fields,
"tab": "agent",
}
memory_fields: list[SettingsField] = []
memory_fields.append(
{
"id": "agent_memory_subdir",
"title": "Memory Subdirectory",
"description": "Subdirectory of /memory folder to use for agent memory storage. Used to separate memory storage between different instances.",
"type": "text",
"value": settings["agent_memory_subdir"],
# "options": [
# {"value": subdir, "label": subdir}
# for subdir in files.get_subdirectories("memory", exclude="embeddings")
# ],
}
)
memory_fields.append(
{
"id": "memory_recall_enabled",
"title": "Memory auto-recall enabled",
"description": "Agent Zero will automatically recall memories based on convesation context.",
"type": "switch",
"value": settings["memory_recall_enabled"],
}
)
memory_fields.append(
{
"id": "memory_recall_delayed",
"title": "Memory auto-recall delayed",
"description": "The agent will not wait for auto memory recall. Memories will be delivered one message later. This speeds up agent's response time but may result in less relevant first step.",
"type": "switch",
"value": settings["memory_recall_delayed"],
}
)
memory_fields.append(
{
"id": "memory_recall_query_prep",
"title": "Auto-recall AI query preparation",
"description": "Enables vector DB query preparation from conversation context by utility LLM for auto-recall. Improves search quality, adds 1 utility LLM call per auto-recall.",
"type": "switch",
"value": settings["memory_recall_query_prep"],
}
)
memory_fields.append(
{
"id": "memory_recall_post_filter",
"title": "Auto-recall AI post-filtering",
"description": "Enables memory relevance filtering by utility LLM for auto-recall. Improves search quality, adds 1 utility LLM call per auto-recall.",
"type": "switch",
"value": settings["memory_recall_post_filter"],
}
)
memory_fields.append(
{
"id": "memory_recall_interval",
"title": "Memory auto-recall interval",
"description": "Memories are recalled after every user or superior agent message. During agent's monologue, memories are recalled every X turns based on this parameter.",
"type": "range",
"min": 1,
"max": 10,
"step": 1,
"value": settings["memory_recall_interval"],
}
)
memory_fields.append(
{
"id": "memory_recall_history_len",
"title": "Memory auto-recall history length",
"description": "The length of conversation history passed to memory recall LLM for context (in characters).",
"type": "number",
"value": settings["memory_recall_history_len"],
}
)
memory_fields.append(
{
"id": "memory_recall_similarity_threshold",
"title": "Memory auto-recall similarity threshold",
"description": "The threshold for similarity search in memory recall (0 = no similarity, 1 = exact match).",
"type": "range",
"min": 0,
"max": 1,
"step": 0.01,
"value": settings["memory_recall_similarity_threshold"],
}
)
memory_fields.append(
{
"id": "memory_recall_memories_max_search",
"title": "Memory auto-recall max memories to search",
"description": "The maximum number of memories returned by vector DB for further processing.",
"type": "number",
"value": settings["memory_recall_memories_max_search"],
}
)
memory_fields.append(
{
"id": "memory_recall_memories_max_result",
"title": "Memory auto-recall max memories to use",
"description": "The maximum number of memories to inject into A0's context window.",
"type": "number",
"value": settings["memory_recall_memories_max_result"],
}
)
memory_fields.append(
{
"id": "memory_recall_solutions_max_search",
"title": "Memory auto-recall max solutions to search",
"description": "The maximum number of solutions returned by vector DB for further processing.",
"type": "number",
"value": settings["memory_recall_solutions_max_search"],
}
)
memory_fields.append(
{
"id": "memory_recall_solutions_max_result",
"title": "Memory auto-recall max solutions to use",
"description": "The maximum number of solutions to inject into A0's context window.",
"type": "number",
"value": settings["memory_recall_solutions_max_result"],
}
)
memory_fields.append(
{
"id": "memory_memorize_enabled",
"title": "Auto-memorize enabled",
"description": "A0 will automatically memorize facts and solutions from conversation history.",
"type": "switch",
"value": settings["memory_memorize_enabled"],
}
)
memory_fields.append(
{
"id": "memory_memorize_consolidation",
"title": "Auto-memorize AI consolidation",
"description": "A0 will automatically consolidate similar memories using utility LLM. Improves memory quality over time, adds 2 utility LLM calls per memory.",
"type": "switch",
"value": settings["memory_memorize_consolidation"],
}
)
memory_fields.append(
{
"id": "memory_memorize_replace_threshold",
"title": "Auto-memorize replacement threshold",
"description": "Only applies when AI consolidation is disabled. Replaces previous similar memories with new ones based on this threshold. 0 = replace even if not similar at all, 1 = replace only if exact match.",
"type": "range",
"min": 0,
"max": 1,
"step": 0.01,
"value": settings["memory_memorize_replace_threshold"],
}
)
memory_section: SettingsSection = {
"id": "memory",
"title": "Memory",
"description": "Configuration of A0's memory system. A0 memorizes and recalls memories automatically to help it's context awareness.",
"fields": memory_fields,
"tab": "agent",
}
dev_fields: list[SettingsField] = []
dev_fields.append(
{
"id": "shell_interface",
"title": "Shell Interface",
"description": "Terminal interface used for Code Execution Tool. Local Python TTY works locally in both dockerized and development environments. SSH always connects to dockerized environment (automatically at localhost or RFC host address).",
"type": "select",
"value": settings["shell_interface"],
"options": [{"value": "local", "label": "Local Python TTY"}, {"value": "ssh", "label": "SSH"}],
}
)
if runtime.is_development():
# dev_fields.append(
# {
# "id": "rfc_auto_docker",
# "title": "RFC Auto Docker Management",
# "description": "Automatically create dockerized instance of A0 for RFCs using this instance's code base and, settings and .env.",
# "type": "text",
# "value": settings["rfc_auto_docker"],
# }
# )
dev_fields.append(
{
"id": "rfc_url",
"title": "RFC Destination URL",
"description": "URL of dockerized A0 instance for remote function calls. Do not specify port here.",
"type": "text",
"value": settings["rfc_url"],
}
)
dev_fields.append(
{
"id": "rfc_password",
"title": "RFC Password",
"description": "Password for remote function calls. Passwords must match on both Flare instances. RFCs can not be used with empty password.",
"type": "password",
"value": (
PASSWORD_PLACEHOLDER
if dotenv.get_dotenv_value(dotenv.KEY_RFC_PASSWORD)
else ""
),
}
)
if runtime.is_development():
dev_fields.append(
{
"id": "rfc_port_http",
"title": "RFC HTTP port",
"description": "HTTP port for dockerized instance of A0.",
"type": "text",
"value": settings["rfc_port_http"],
}
)
dev_fields.append(
{
"id": "rfc_port_ssh",
"title": "RFC SSH port",
"description": "SSH port for dockerized instance of A0.",
"type": "text",
"value": settings["rfc_port_ssh"],
}
)
dev_section: SettingsSection = {
"id": "dev",
"title": "Development",
"description": "Parameters for A0 framework development. RFCs (remote function calls) are used to call functions on another A0 instance. You can develop and debug A0 natively on your local system while redirecting some functions to A0 instance in docker. This is crucial for development as A0 needs to run in standardized environment to support all features.",
"fields": dev_fields,
"tab": "developer",
}
# code_exec_fields: list[SettingsField] = []
# code_exec_fields.append(
# {
# "id": "code_exec_ssh_enabled",
# "title": "Use SSH for code execution",
# "description": "Code execution will use SSH to connect to the terminal. When disabled, a local python terminal interface is used instead. SSH should only be used in development environment or when encountering issues with the local python terminal interface.",
# "type": "switch",
# "value": settings["code_exec_ssh_enabled"],
# }
# )
# code_exec_fields.append(
# {
# "id": "code_exec_ssh_addr",
# "title": "Code execution SSH address",
# "description": "Address of the SSH server for code execution. Only applies when SSH is enabled.",
# "type": "text",
# "value": settings["code_exec_ssh_addr"],
# }
# )
# code_exec_fields.append(
# {
# "id": "code_exec_ssh_port",
# "title": "Code execution SSH port",
# "description": "Port of the SSH server for code execution. Only applies when SSH is enabled.",
# "type": "text",
# "value": settings["code_exec_ssh_port"],
# }
# )
# code_exec_section: SettingsSection = {
# "id": "code_exec",
# "title": "Code execution",
# "description": "Configuration of code execution by the agent.",
# "fields": code_exec_fields,
# "tab": "developer",
# }
# Speech to text section
stt_fields: list[SettingsField] = []
stt_fields.append(
{
"id": "stt_microphone_section",
"title": "Microphone device",
"description": "Select the microphone device to use for speech-to-text.",
"value": "<x-component path='/settings/speech/microphone.html' />",
"type": "html",
}
)
stt_fields.append(
{
"id": "stt_model_size",
"title": "Speech-to-text model size",
"description": "Select the speech-to-text model size",
"type": "select",
"value": settings["stt_model_size"],
"options": [
{"value": "tiny", "label": "Tiny (39M, English)"},
{"value": "base", "label": "Base (74M, English)"},
{"value": "small", "label": "Small (244M, English)"},
{"value": "medium", "label": "Medium (769M, English)"},
{"value": "large", "label": "Large (1.5B, Multilingual)"},
{"value": "turbo", "label": "Turbo (Multilingual)"},
],
}
)
stt_fields.append(
{
"id": "stt_language",
"title": "Speech-to-text language code",
"description": "Language code (e.g. en, fr, it)",
"type": "text",
"value": settings["stt_language"],
}
)
stt_fields.append(
{
"id": "stt_silence_threshold",
"title": "Microphone silence threshold",
"description": "Silence detection threshold. Lower values are more sensitive to noise.",
"type": "range",
"min": 0,
"max": 1,
"step": 0.01,
"value": settings["stt_silence_threshold"],
}
)
stt_fields.append(
{
"id": "stt_silence_duration",
"title": "Microphone silence duration (ms)",
"description": "Duration of silence before the system considers speaking to have ended.",
"type": "text",
"value": settings["stt_silence_duration"],
}
)
stt_fields.append(
{
"id": "stt_waiting_timeout",
"title": "Microphone waiting timeout (ms)",
"description": "Duration of silence before the system closes the microphone.",
"type": "text",
"value": settings["stt_waiting_timeout"],
}
)
# TTS fields
tts_fields: list[SettingsField] = []
tts_fields.append(
{
"id": "tts_kokoro",
"title": "Enable Kokoro TTS",
"description": "Enable higher quality server-side AI (Kokoro) instead of browser-based text-to-speech.",
"type": "switch",
"value": settings["tts_kokoro"],
}
)
speech_section: SettingsSection = {
"id": "speech",
"title": "Speech",
"description": "Voice transcription and speech synthesis settings.",
"fields": stt_fields + tts_fields,
"tab": "agent",
}
# MCP section
mcp_client_fields: list[SettingsField] = []
mcp_client_fields.append(
{
"id": "mcp_servers_config",
"title": "MCP Servers Configuration",
"description": "External MCP servers can be configured here.",
"type": "button",
"value": "Open",
}
)
mcp_client_fields.append(
{
"id": "mcp_servers",
"title": "MCP Servers",
"description": "(JSON list of) >> RemoteServer <<: [name, url, headers, timeout (opt), sse_read_timeout (opt), disabled (opt)] / >> Local Server <<: [name, command, args, env, encoding (opt), encoding_error_handler (opt), disabled (opt)]",
"type": "textarea",
"value": settings["mcp_servers"],
"hidden": True,
}
)
mcp_client_fields.append(
{
"id": "mcp_client_init_timeout",
"title": "MCP Client Init Timeout",
"description": "Timeout for MCP client initialization (in seconds). Higher values might be required for complex MCPs, but might also slowdown system startup.",
"type": "number",
"value": settings["mcp_client_init_timeout"],
}
)
mcp_client_fields.append(
{
"id": "mcp_client_tool_timeout",
"title": "MCP Client Tool Timeout",
"description": "Timeout for MCP client tool execution. Higher values might be required for complex tools, but might also result in long responses with failing tools.",
"type": "number",
"value": settings["mcp_client_tool_timeout"],
}
)
mcp_client_section: SettingsSection = {
"id": "mcp_client",
"title": "External MCP Servers",
"description": "Agent Zero can use external MCP servers, local or remote as tools.",
"fields": mcp_client_fields,
"tab": "mcp",
}
mcp_server_fields: list[SettingsField] = []
mcp_server_fields.append(
{
"id": "mcp_server_enabled",
"title": "Enable A0 MCP Server",
"description": "Expose Agent Zero as an SSE/HTTP MCP server. This will make this A0 instance available to MCP clients.",
"type": "switch",
"value": settings["mcp_server_enabled"],
}
)
mcp_server_fields.append(
{
"id": "mcp_server_token",
"title": "MCP Server Token",
"description": "Token for MCP server authentication.",
"type": "text",
"hidden": True,
"value": settings["mcp_server_token"],
}
)
mcp_server_section: SettingsSection = {
"id": "mcp_server",
"title": "A0 MCP Server",
"description": "Agent Zero can be exposed as an SSE MCP server. See <a href=\"javascript:openModal('settings/mcp/server/example.html')\">connection example</a>.",
"fields": mcp_server_fields,
"tab": "mcp",
}
# -------- A2A Section --------
a2a_fields: list[SettingsField] = []
a2a_fields.append(
{
"id": "a2a_server_enabled",
"title": "Enable A2A server",
"description": "Expose Agent Zero as A2A server. This allows other agents to connect to A0 via A2A protocol.",
"type": "switch",
"value": settings["a2a_server_enabled"],
}
)
a2a_section: SettingsSection = {
"id": "a2a_server",
"title": "A0 A2A Server",
"description": "Agent Zero can be exposed as an A2A server. See <a href=\"javascript:openModal('settings/a2a/a2a-connection.html')\">connection example</a>.",
"fields": a2a_fields,
"tab": "mcp",
}
# External API section
external_api_fields: list[SettingsField] = []
external_api_fields.append(
{
"id": "external_api_examples",
"title": "API Examples",
"description": "View examples for using Agent Zero's external API endpoints with API key authentication.",
"type": "button",
"value": "Show API Examples",
}
)
external_api_section: SettingsSection = {
"id": "external_api",
"title": "External API",
"description": "Agent Zero provides external API endpoints for integration with other applications. "
"These endpoints use API key authentication and support text messages and file attachments.",
"fields": external_api_fields,
"tab": "external",
}
# Backup & Restore section
backup_fields: list[SettingsField] = []
backup_fields.append(
{
"id": "backup_create",
"title": "Create Backup",
"description": "Create a backup archive of selected files and configurations "
"using customizable patterns.",
"type": "button",
"value": "Create Backup",
}
)
backup_fields.append(
{
"id": "backup_restore",
"title": "Restore from Backup",
"description": "Restore files and configurations from a backup archive "
"with pattern-based selection.",
"type": "button",
"value": "Restore Backup",
}
)
backup_section: SettingsSection = {
"id": "backup_restore",
"title": "Backup & Restore",
"description": "Backup and restore Agent Zero data and configurations "
"using glob pattern-based file selection.",
"fields": backup_fields,
"tab": "backup",
}
# Add the section to the result
result: SettingsOutput = {
"sections": [
agent_section,
chat_model_section,
util_model_section,
browser_model_section,
embed_model_section,
memory_section,
speech_section,
api_keys_section,
auth_section,
mcp_client_section,
mcp_server_section,
a2a_section,
external_api_section,
backup_section,
dev_section,
# code_exec_section,
]
}
return result
def _get_api_key_field(settings: Settings, provider: str, title: str) -> SettingsField:
key = settings["api_keys"].get(provider, models.get_api_key(provider))
# For API keys, use simple asterisk placeholder for existing keys
return {
"id": f"api_key_{provider}",
"title": title,
"type": "text",
"value": (API_KEY_PLACEHOLDER if key and key != "None" else ""),
}
def convert_in(settings: dict) -> Settings:
current = get_settings()
for section in settings["sections"]:
if "fields" in section:
for field in section["fields"]:
# Skip saving if value is a placeholder
should_skip = (
field["value"] == PASSWORD_PLACEHOLDER or
field["value"] == API_KEY_PLACEHOLDER
)
if not should_skip:
if field["id"].endswith("_kwargs"):
current[field["id"]] = _env_to_dict(field["value"])
elif field["id"].startswith("api_key_"):
current["api_keys"][field["id"]] = field["value"]
else:
current[field["id"]] = field["value"]
return current
def get_settings() -> Settings:
global _settings
if not _settings:
_settings = _read_settings_file()
if not _settings:
_settings = get_default_settings()
norm = normalize_settings(_settings)
return norm
def set_settings(settings: Settings, apply: bool = True):
global _settings
previous = _settings
_settings = normalize_settings(settings)
_write_settings_file(_settings)
if apply:
_apply_settings(previous)
def set_settings_delta(delta: dict, apply: bool = True):
current = get_settings()
new = {**current, **delta}
set_settings(new, apply) # type: ignore
def normalize_settings(settings: Settings) -> Settings:
copy = settings.copy()
default = get_default_settings()
# Automatically use BLABLADOR_API_KEY for 'other' provider if available
blablador_key = os.getenv("BLABLADOR_API_KEY")
if blablador_key:
os.environ.setdefault("OTHER_API_KEY", blablador_key)
os.environ.setdefault("API_KEY_OTHER", blablador_key)
os.environ.setdefault("OPENAI_API_KEY", blablador_key)
os.environ.setdefault("API_KEY_OPENAI", blablador_key)
# Robustly handle provider name if it's the label instead of ID
label_to_id = {
"Other OpenAI compatible": "other",
"OpenAI": "openai",
"Anthropic": "anthropic",
"Google": "google",
"DeepSeek": "deepseek",
"Groq": "groq",
"HuggingFace": "huggingface",
"LM Studio": "lm_studio",
"Mistral AI": "mistral",
"Ollama": "ollama",
"OpenRouter": "openrouter",
"Sambanova": "sambanova",
"Venice": "venice"
}
for key in ["chat_model_provider", "util_model_provider", "embed_model_provider", "browser_model_provider"]:
if key in copy and copy[key] in label_to_id:
print(f"DEBUG: Normalizing {key} from '{copy[key]}' to '{label_to_id[copy[key]]}'")
copy[key] = label_to_id[copy[key]]
# adjust settings values to match current version if needed
if "version" not in copy or copy["version"] != default["version"]:
_adjust_to_version(copy, default)
copy["version"] = default["version"] # sync version
# remove keys that are not in default
keys_to_remove = [key for key in copy if key not in default]
for key in keys_to_remove:
del copy[key]
# add missing keys and normalize types
for key, value in default.items():
if key not in copy:
copy[key] = value
else:
try:
copy[key] = type(value)(copy[key]) # type: ignore
if isinstance(copy[key], str):
copy[key] = copy[key].strip() # strip strings
except (ValueError, TypeError):
copy[key] = value # make default instead
# mcp server token is set automatically
copy["mcp_server_token"] = create_auth_token()
return copy
def _adjust_to_version(settings: Settings, default: Settings):
# starting with 0.9, the default prompt subfolder for agent no. 0 is agent0
# switch to agent0 if the old default is used from v0.8
if "version" not in settings or settings["version"].startswith("v0.8"):
if "agent_profile" not in settings or settings["agent_profile"] == "default":
settings["agent_profile"] = "agent0"
def _read_settings_file() -> Settings | None:
if os.path.exists(SETTINGS_FILE):
content = files.read_file(SETTINGS_FILE)
parsed = json.loads(content)
return normalize_settings(parsed)
def _write_settings_file(settings: Settings):
settings = settings.copy()
_write_sensitive_settings(settings)
_remove_sensitive_settings(settings)
# write settings
content = json.dumps(settings, indent=4)
files.write_file(SETTINGS_FILE, content)
def _remove_sensitive_settings(settings: Settings):
settings["api_keys"] = {}
settings["auth_login"] = ""
settings["auth_password"] = ""
settings["rfc_password"] = ""
settings["root_password"] = ""
settings["mcp_server_token"] = ""
def _write_sensitive_settings(settings: Settings):
for key, val in settings["api_keys"].items():
dotenv.save_dotenv_value(key.upper(), val)
dotenv.save_dotenv_value(dotenv.KEY_AUTH_LOGIN, settings["auth_login"])
if settings["auth_password"]:
dotenv.save_dotenv_value(dotenv.KEY_AUTH_PASSWORD, settings["auth_password"])
if settings["rfc_password"]:
dotenv.save_dotenv_value(dotenv.KEY_RFC_PASSWORD, settings["rfc_password"])
if settings["root_password"]:
dotenv.save_dotenv_value(dotenv.KEY_ROOT_PASSWORD, settings["root_password"])
if settings["root_password"]:
set_root_password(settings["root_password"])
def get_default_settings() -> Settings:
return Settings(
version=_get_version(),
chat_model_provider="openrouter",
chat_model_name="openai/gpt-4.1",
chat_model_api_base="",
chat_model_kwargs={"temperature": "0"},
chat_model_ctx_length=100000,
chat_model_ctx_history=0.7,
chat_model_vision=True,
chat_model_rl_requests=0,
chat_model_rl_input=0,
chat_model_rl_output=0,
util_model_provider="openrouter",
util_model_name="openai/gpt-4.1-mini",
util_model_api_base="",
util_model_ctx_length=100000,
util_model_ctx_input=0.7,
util_model_kwargs={"temperature": "0"},
util_model_rl_requests=0,
util_model_rl_input=0,
util_model_rl_output=0,
embed_model_provider="huggingface",
embed_model_name="sentence-transformers/all-MiniLM-L6-v2",
embed_model_api_base="",
embed_model_kwargs={},
embed_model_rl_requests=0,
embed_model_rl_input=0,
browser_model_provider="openrouter",
browser_model_name="openai/gpt-4.1",
browser_model_api_base="",
browser_model_vision=True,
browser_model_rl_requests=0,
browser_model_rl_input=0,
browser_model_rl_output=0,
browser_model_kwargs={"temperature": "0"},
memory_recall_enabled=True,
memory_recall_delayed=False,
memory_recall_interval=3,
memory_recall_history_len=10000,
memory_recall_memories_max_search=12,
memory_recall_solutions_max_search=8,
memory_recall_memories_max_result=5,
memory_recall_solutions_max_result=3,
memory_recall_similarity_threshold=0.7,
memory_recall_query_prep=True,
memory_recall_post_filter=True,
memory_memorize_enabled=True,
memory_memorize_consolidation=True,
memory_memorize_replace_threshold=0.9,
api_keys={},
auth_login="",
auth_password="",
root_password="",
agent_profile="agent0",
agent_memory_subdir="default",
agent_knowledge_subdir="custom",
rfc_auto_docker=True,
rfc_url="localhost",
rfc_password="",
rfc_port_http=55080,
rfc_port_ssh=55022,
shell_interface="local" if runtime.is_dockerized() else "ssh",
stt_model_size="base",
stt_language="en",
stt_silence_threshold=0.3,
stt_silence_duration=1000,
stt_waiting_timeout=2000,
tts_kokoro=True,
mcp_servers='{\n "mcpServers": {}\n}',
mcp_client_init_timeout=10,
mcp_client_tool_timeout=120,
mcp_server_enabled=False,
mcp_server_token=create_auth_token(),
a2a_server_enabled=False,
)
def _apply_settings(previous: Settings | None):
global _settings
if _settings:
from agent import AgentContext
from initialize import initialize_agent
config = initialize_agent()
for ctx in AgentContext._contexts.values():
ctx.config = config # reinitialize context config with new settings
# apply config to agents
agent = ctx.agent0
while agent:
agent.config = ctx.config
agent = agent.get_data(agent.DATA_NAME_SUBORDINATE)
# reload whisper model if necessary
if not previous or _settings["stt_model_size"] != previous["stt_model_size"]:
task = defer.DeferredTask().start_task(
whisper.preload, _settings["stt_model_size"]
) # TODO overkill, replace with background task
# force memory reload on embedding model change
if not previous or (
_settings["embed_model_name"] != previous["embed_model_name"]
or _settings["embed_model_provider"] != previous["embed_model_provider"]
or _settings["embed_model_kwargs"] != previous["embed_model_kwargs"]
):
from python.helpers.memory import reload as memory_reload
memory_reload()
# update mcp settings if necessary
if not previous or _settings["mcp_servers"] != previous["mcp_servers"]:
from python.helpers.mcp_handler import MCPConfig
async def update_mcp_settings(mcp_servers: str):
PrintStyle(
background_color="black", font_color="white", padding=True
).print("Updating MCP config...")
AgentContext.log_to_all(
type="info", content="Updating MCP settings...", temp=True
)
mcp_config = MCPConfig.get_instance()
try:
MCPConfig.update(mcp_servers)
except Exception as e:
AgentContext.log_to_all(
type="error",
content=f"Failed to update MCP settings: {e}",
temp=False,
)
(
PrintStyle(
background_color="red", font_color="black", padding=True
).print("Failed to update MCP settings")
)
(
PrintStyle(
background_color="black", font_color="red", padding=True
).print(f"{e}")
)
PrintStyle(
background_color="#6734C3", font_color="white", padding=True
).print("Parsed MCP config:")
(
PrintStyle(
background_color="#334455", font_color="white", padding=False
).print(mcp_config.model_dump_json())
)
AgentContext.log_to_all(
type="info", content="Finished updating MCP settings.", temp=True
)
task2 = defer.DeferredTask().start_task(
update_mcp_settings, config.mcp_servers
) # TODO overkill, replace with background task
# update token in mcp server
current_token = (
create_auth_token()
) # TODO - ugly, token in settings is generated from dotenv and does not always correspond
if not previous or current_token != previous["mcp_server_token"]:
async def update_mcp_token(token: str):
from python.helpers.mcp_server import DynamicMcpProxy
DynamicMcpProxy.get_instance().reconfigure(token=token)
task3 = defer.DeferredTask().start_task(
update_mcp_token, current_token
) # TODO overkill, replace with background task
# update token in a2a server
if not previous or current_token != previous["mcp_server_token"]:
async def update_a2a_token(token: str):
from python.helpers.fasta2a_server import DynamicA2AProxy
DynamicA2AProxy.get_instance().reconfigure(token=token)
task4 = defer.DeferredTask().start_task(
update_a2a_token, current_token
) # TODO overkill, replace with background task
def _env_to_dict(data: str):
env_dict = {}
line_pattern = re.compile(r"\s*([^#][^=]*)\s*=\s*(.*)")
for line in data.splitlines():
match = line_pattern.match(line)
if match:
key, value = match.groups()
# Remove optional surrounding quotes (single or double)
value = value.strip().strip('"').strip("'")
env_dict[key.strip()] = value
return env_dict
def _dict_to_env(data_dict):
lines = []
for key, value in data_dict.items():
if "\n" in value:
value = f"'{value}'"
elif " " in value or value == "" or any(c in value for c in "\"'"):
value = f'"{value}"'
lines.append(f"{key}={value}")
return "\n".join(lines)
def set_root_password(password: str):
if not runtime.is_dockerized():
raise Exception("root password can only be set in dockerized environments")
_result = subprocess.run(
["chpasswd"],
input=f"root:{password}".encode(),
capture_output=True,
check=True,
)
dotenv.save_dotenv_value(dotenv.KEY_ROOT_PASSWORD, password)
def get_runtime_config(set: Settings):
if runtime.is_dockerized():
return {
"code_exec_ssh_enabled": set["shell_interface"] == "ssh",
"code_exec_ssh_addr": "localhost",
"code_exec_ssh_port": 22,
"code_exec_ssh_user": "root",
}
else:
host = set["rfc_url"]
if "//" in host:
host = host.split("//")[1]
if ":" in host:
host, port = host.split(":")
if host.endswith("/"):
host = host[:-1]
return {
"code_exec_ssh_enabled": set["shell_interface"] == "ssh",
"code_exec_ssh_addr": host,
"code_exec_ssh_port": set["rfc_port_ssh"],
"code_exec_ssh_user": "root",
}
def create_auth_token() -> str:
runtime_id = runtime.get_persistent_id()
username = dotenv.get_dotenv_value(dotenv.KEY_AUTH_LOGIN) or ""
password = dotenv.get_dotenv_value(dotenv.KEY_AUTH_PASSWORD) or ""
# use base64 encoding for a more compact token with alphanumeric chars
hash_bytes = hashlib.sha256(f"{runtime_id}:{username}:{password}".encode()).digest()
# encode as base64 and remove any non-alphanumeric chars (like +, /, =)
b64_token = base64.urlsafe_b64encode(hash_bytes).decode().replace("=", "")
return b64_token[:16]
def _get_version():
try:
git_info = git.get_git_info()
return str(git_info.get("short_tag", "")).strip() or "unknown"
except Exception:
return "unknown"
|