import argparse import json import multiprocessing import openai import os import os.path as osp import shutil import sys import time import torch from aider.coders import Coder from aider.io import InputOutput from aider.models import Model from datetime import datetime from ai_scientist.generate_ideas import generate_ideas, check_idea_novelty from ai_scientist.llm import create_client, AVAILABLE_LLMS from ai_scientist.perform_experiments import perform_experiments from ai_scientist.perform_review import perform_review, load_paper, perform_improvement from ai_scientist.perform_writeup import perform_writeup, generate_latex NUM_REFLECTIONS = 3 def print_time(): print(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) def parse_arguments(): parser = argparse.ArgumentParser(description="Run AI scientist experiments") parser.add_argument( "--skip-idea-generation", action="store_true", help="Skip idea generation and load existing ideas", ) parser.add_argument( "--skip-novelty-check", action="store_true", help="Skip novelty check and use existing ideas", ) # add type of experiment (nanoGPT, Boston, etc.) parser.add_argument( "--experiment", type=str, default="nanoGPT", help="Experiment to run AI Scientist on.", ) parser.add_argument( "--model", type=str, default="claude-3-5-sonnet-20240620", choices=AVAILABLE_LLMS, help="Model to use for AI Scientist.", ) parser.add_argument( "--writeup", type=str, default="latex", choices=["latex"], help="What format to use for writeup", ) parser.add_argument( "--parallel", type=int, default=0, help="Number of parallel processes to run. 0 for sequential execution.", ) parser.add_argument( "--improvement", action="store_true", help="Improve based on reviews.", ) parser.add_argument( "--gpus", type=str, default=None, help="Comma-separated list of GPU IDs to use (e.g., '0,1,2'). If not specified, all available GPUs will be used.", ) parser.add_argument( "--num-ideas", type=int, default=50, help="Number of ideas to generate", ) parser.add_argument( "--engine", type=str, default="semanticscholar", choices=["semanticscholar", "openalex"], help="Scholar engine to use.", ) return parser.parse_args() def get_available_gpus(gpu_ids=None): if gpu_ids is not None: return [int(gpu_id) for gpu_id in gpu_ids.split(",")] return list(range(torch.cuda.device_count())) def check_latex_dependencies(): """ Check if required LaTeX dependencies are installed on the system. Returns True if all dependencies are found, False otherwise. """ import shutil import sys required_dependencies = ['pdflatex', 'chktex'] missing_deps = [] for dep in required_dependencies: if shutil.which(dep) is None: missing_deps.append(dep) if missing_deps: print("Error: Required LaTeX dependencies not found:", file=sys.stderr) return False return True def worker( queue, base_dir, results_dir, model, client, client_model, writeup, improvement, gpu_id, ): os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) print(f"Worker {gpu_id} started.") while True: idea = queue.get() if idea is None: break success = do_idea( base_dir, results_dir, idea, model, client, client_model, writeup, improvement, log_file=True, ) print(f"Completed idea: {idea['Name']}, Success: {success}") print(f"Worker {gpu_id} finished.") def do_idea( base_dir, results_dir, idea, model, client, client_model, writeup, improvement, log_file=False, ): ## CREATE PROJECT FOLDER timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") idea_name = f"{timestamp}_{idea['Name']}" folder_name = osp.join(results_dir, idea_name) assert not osp.exists(folder_name), f"Folder {folder_name} already exists." destination_dir = folder_name shutil.copytree(base_dir, destination_dir, dirs_exist_ok=True) with open(osp.join(base_dir, "run_0", "final_info.json"), "r") as f: baseline_results = json.load(f) # Check if baseline_results is a dictionary before extracting means if isinstance(baseline_results, dict): baseline_results = {k: v["means"] for k, v in baseline_results.items()} exp_file = osp.join(folder_name, "experiment.py") vis_file = osp.join(folder_name, "plot.py") notes = osp.join(folder_name, "notes.txt") with open(notes, "w") as f: f.write(f"# Title: {idea['Title']}\n") f.write(f"# Experiment description: {idea['Experiment']}\n") f.write(f"## Run 0: Baseline\n") f.write(f"Results: {baseline_results}\n") f.write(f"Description: Baseline results.\n") if log_file: original_stdout = sys.stdout original_stderr = sys.stderr log_path = osp.join(folder_name, "log.txt") log = open(log_path, "a") sys.stdout = log sys.stderr = log try: print_time() print(f"*Starting idea: {idea_name}*") ## PERFORM EXPERIMENTS fnames = [exp_file, vis_file, notes] io = InputOutput( yes=True, chat_history_file=f"{folder_name}/{idea_name}_aider.txt" ) if model == "deepseek-coder-v2-0724": main_model = Model("deepseek/deepseek-coder") elif model == "deepseek-reasoner": main_model = Model("deepseek/deepseek-reasoner") elif model == "llama3.1-405b": main_model = Model("openrouter/meta-llama/llama-3.1-405b-instruct") else: main_model = Model(model) coder = Coder.create( main_model=main_model, fnames=fnames, io=io, stream=False, use_git=False, edit_format="diff", ) print_time() print(f"*Starting Experiments*") try: success = perform_experiments(idea, folder_name, coder, baseline_results) except Exception as e: print(f"Error during experiments: {e}") print(f"Experiments failed for idea {idea_name}") return False if not success: print(f"Experiments failed for idea {idea_name}") return False print_time() print(f"*Starting Writeup*") ## PERFORM WRITEUP if writeup == "latex": writeup_file = osp.join(folder_name, "latex", "template.tex") fnames = [exp_file, writeup_file, notes] if model == "deepseek-coder-v2-0724": main_model = Model("deepseek/deepseek-coder") elif model == "deepseek-reasoner": main_model = Model("deepseek/deepseek-reasoner") elif model == "llama3.1-405b": main_model = Model("openrouter/meta-llama/llama-3.1-405b-instruct") else: main_model = Model(model) coder = Coder.create( main_model=main_model, fnames=fnames, io=io, stream=False, use_git=False, edit_format="diff", ) try: perform_writeup(idea, folder_name, coder, client, client_model, engine=args.engine) except Exception as e: print(f"Failed to perform writeup: {e}") return False print("Done writeup") else: raise ValueError(f"Writeup format {writeup} not supported.") print_time() print(f"*Starting Review*") ## REVIEW PAPER if writeup == "latex": try: paper_text = load_paper(f"{folder_name}/{idea['Name']}.pdf") review = perform_review( paper_text, model="gpt-4o-2024-05-13", client=openai.OpenAI(), num_reflections=5, num_fs_examples=1, num_reviews_ensemble=5, temperature=0.1, ) # Store the review in separate review.txt file with open(osp.join(folder_name, "review.txt"), "w") as f: f.write(json.dumps(review, indent=4)) except Exception as e: print(f"Failed to perform review: {e}") return False ## IMPROVE WRITEUP if writeup == "latex" and improvement: print_time() print(f"*Starting Improvement*") try: perform_improvement(review, coder) generate_latex( coder, folder_name, f"{folder_name}/{idea['Name']}_improved.pdf" ) paper_text = load_paper(f"{folder_name}/{idea['Name']}_improved.pdf") review = perform_review( paper_text, model="gpt-4o-2024-05-13", client=openai.OpenAI(), num_reflections=5, num_fs_examples=1, num_reviews_ensemble=5, temperature=0.1, ) # Store the review in separate review.txt file with open(osp.join(folder_name, "review_improved.txt"), "w") as f: f.write(json.dumps(review)) except Exception as e: print(f"Failed to perform improvement: {e}") return False return True except Exception as e: print(f"Failed to evaluate idea {idea_name}: {str(e)}") return False finally: print("FINISHED IDEA") if log_file: sys.stdout = original_stdout sys.stderr = original_stderr log.close() if __name__ == "__main__": args = parse_arguments() # Check available GPUs and adjust parallel processes if necessary available_gpus = get_available_gpus(args.gpus) if args.parallel > len(available_gpus): print( f"Warning: Requested {args.parallel} parallel processes, but only {len(available_gpus)} GPUs available. Adjusting to {len(available_gpus)}." ) args.parallel = len(available_gpus) print(f"Using GPUs: {available_gpus}") # Check LaTeX dependencies before proceeding if args.writeup == "latex" and not check_latex_dependencies(): sys.exit(1) # Create client client, client_model = create_client(args.model) base_dir = osp.join("templates", args.experiment) results_dir = osp.join("results", args.experiment) ideas = generate_ideas( base_dir, client=client, model=client_model, skip_generation=args.skip_idea_generation, max_num_generations=args.num_ideas, num_reflections=NUM_REFLECTIONS, ) if not args.skip_novelty_check: ideas = check_idea_novelty( ideas, base_dir=base_dir, client=client, model=client_model, engine=args.engine, ) with open(osp.join(base_dir, "ideas.json"), "w") as f: json.dump(ideas, f, indent=4) novel_ideas = [idea for idea in ideas if idea["novel"]] # novel_ideas = list(reversed(novel_ideas)) if args.parallel > 0: print(f"Running {args.parallel} parallel processes") queue = multiprocessing.Queue() for idea in novel_ideas: queue.put(idea) processes = [] for i in range(args.parallel): gpu_id = available_gpus[i % len(available_gpus)] p = multiprocessing.Process( target=worker, args=( queue, base_dir, results_dir, args.model, client, client_model, args.writeup, args.improvement, gpu_id, ), ) p.start() time.sleep(150) processes.append(p) # Signal workers to exit for _ in range(args.parallel): queue.put(None) for p in processes: p.join() print("All parallel processes completed.") else: for idea in novel_ideas: print(f"Processing idea: {idea['Name']}") try: success = do_idea( base_dir, results_dir, idea, args.model, client, client_model, args.writeup, args.improvement, ) print(f"Completed idea: {idea['Name']}, Success: {success}") except Exception as e: print(f"Failed to evaluate idea {idea['Name']}: {str(e)}") import traceback print(traceback.format_exc()) print("All ideas evaluated.")