File size: 12,858 Bytes
c1d0c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fcdf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1d0c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fcdf4e
c1d0c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
import pandas as pd
import json
import random
import requests
import os
from datetime import datetime
from tinytroupe.simulation_manager import SimulationManager, SimulationConfig
from tinytroupe.agent.social_types import Content
from tinytroupe.agent.tiny_person import TinyPerson
import tinytroupe.openai_utils as openai_utils

# Initialize Simulation Manager
simulation_manager = SimulationManager()
REMOTE_BACKEND = "https://auxteam-tiny-factory.hf.space"

def generate_personas(business_description, customer_profile, num_personas, api_key=None):
    if api_key: os.environ["BLABLADOR_API_KEY"] = api_key
    use_remote = random.random() < 0.5
    if use_remote:
        try:
            response = requests.post(f"{REMOTE_BACKEND}/api/generate_personas", json={"data": [business_description, customer_profile, num_personas, ""]}, timeout=120)
            if response.status_code == 200: return response.json()["data"][0]
        except: pass
    from tinytroupe.factory.tiny_person_factory import TinyPersonFactory
    factory = TinyPersonFactory(context=f"{business_description} {customer_profile}", total_population_size=int(num_personas))
    personas = factory.generate_people(number_of_people=int(num_personas))
    return [p._persona for p in personas]

def start_simulation(name, content_text, format_type, persona_count, network_type):
    config = SimulationConfig(name=name, persona_count=int(persona_count), network_type=network_type)
    sim = simulation_manager.create_simulation(config)
    content = Content(text=content_text, format=format_type)
    simulation_manager.run_simulation(sim.id, content)
    
    nodes = [{"id": p.name, "label": p.name, "title": f"<b>{p.name}</b><br>{p.minibio()}", "full_bio": json.dumps(p._persona, indent=2)} for p in sim.personas]
    edges = [{"from": e.connection_id.split('_')[0], "to": e.connection_id.split('_')[1]} for e in sim.network.edges]
    analysis_df = pd.DataFrame(sim.analysis_results)
    if analysis_df.empty: analysis_df = pd.DataFrame(columns=["persona_name", "opinion", "analysis", "implications"])
    
    return analysis_df, nodes, edges, sim.id

def get_persona_details(sim_id, persona_name):
    persona = simulation_manager.get_persona(sim_id, persona_name)
    return json.dumps(persona, indent=2) if persona else "Not found"

# API functions for backward compatibility
def generate_social_network_api(name, persona_count, network_type, focus_group_name=None):
    config = SimulationConfig(name=name, persona_count=int(persona_count), network_type=network_type)
    sim = simulation_manager.create_simulation(config, focus_group_name)
    return {"simulation_id": sim.id, "persona_count": len(sim.personas)}

def predict_engagement_api(simulation_id, content_text, format_type):
    sim = simulation_manager.get_simulation(simulation_id)
    if not sim: return {"error": "Simulation not found"}
    content = Content(text=content_text, format=format_type)
    results = []
    for p in sim.personas:
        reaction = p.predict_reaction(content)
        results.append({"persona": p.name, "will_engage": reaction.will_engage, "probability": reaction.probability})
    return results

def start_simulation_async_api(simulation_id, content_text, format_type):
    content = Content(text=content_text, format=format_type)
    simulation_manager.run_simulation(simulation_id, content, background=True)
    return {"status": "started", "simulation_id": simulation_id}

def get_simulation_status_api(simulation_id):
    sim = simulation_manager.get_simulation(simulation_id)
    if not sim: return {"error": "Simulation not found"}
    return {"status": sim.status, "progress": sim.progress}

def send_chat_message_api(simulation_id, sender, message):
    return simulation_manager.send_chat_message(simulation_id, sender, message)

def get_chat_history_api(simulation_id):
    return simulation_manager.get_chat_history(simulation_id)

def generate_variants_api(original_content, num_variants):
    variants = simulation_manager.variant_generator.generate_variants(original_content, int(num_variants))
    return [v.text for v in variants]

def list_simulations_api():
    return simulation_manager.list_simulations()

def list_personas_api(simulation_id):
    return simulation_manager.list_personas(simulation_id)

def get_persona_api(simulation_id, persona_name):
    return simulation_manager.get_persona(simulation_id, persona_name)

def delete_simulation_api(simulation_id):
    success = simulation_manager.delete_simulation(simulation_id)
    return {"success": success}

def export_simulation_api(simulation_id):
    return simulation_manager.export_simulation(simulation_id)

def get_network_graph_api(simulation_id):
    sim = simulation_manager.get_simulation(simulation_id)
    if not sim: return {"error": "Simulation not found"}
    nodes = [{"id": p.name, "label": p.name, "role": p._persona.get("occupation")} for p in sim.personas]
    edges = [{"source": e.connection_id.split('_')[0], "target": e.connection_id.split('_')[1]} for e in sim.network.edges]
    return {"nodes": nodes, "edges": edges}

def list_focus_groups_api():
    return simulation_manager.list_focus_groups()

def save_focus_group_api(name, simulation_id):
    sim = simulation_manager.get_simulation(simulation_id)
    if not sim: return {"error": "Simulation not found"}
    simulation_manager.save_focus_group(name, sim.personas)
    return {"status": "success", "name": name}

# UI Layout
with gr.Blocks(css=".big-input textarea { height: 300px !important; } #mesh-network-container { height: 600px; background: #101622; border-radius: 12px; }", title="Tiny Factory") as demo:
    gr.HTML('<script src="https://unpkg.com/vis-network/standalone/umd/vis-network.min.js"></script>')
    gr.Markdown("# 🌐 Tiny Factory: Social Simulation Dashboard")
    
    current_sim_id = gr.State()
    
    with gr.Tabs():
        with gr.Tab("Simulation Dashboard"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### πŸ“ Content Input")
                    sim_name = gr.Textbox(label="Simulation Name", value="Market Pulse")
                    content_input = gr.Textbox(label="Content (Blog, LinkedIn, etc.)", lines=10, elem_classes="big-input")
                    content_format = gr.Dropdown(choices=["Blog Post", "LinkedIn Update", "Tweet", "Email"], label="Format", value="LinkedIn Update")
                    num_personas_sim = gr.Slider(minimum=5, maximum=50, value=10, step=1, label="Number of Personas")
                    network_type_sim = gr.Dropdown(choices=["scale_free", "small_world"], label="Network Topology", value="scale_free")
                    run_btn = gr.Button("πŸš€ Run Simulation", variant="primary")
                with gr.Column(scale=2):
                    gr.Markdown("### πŸ•ΈοΈ Persona Mesh Network (Hover for Bio, Click for Details)")
                    gr.HTML('<div id="mesh-network-container"></div>')
                    with gr.Accordion("Detailed Persona Profile", open=False):
                        detail_name = gr.Textbox(label="Name", interactive=False)
                        detail_json = gr.Code(label="Profile JSON", language="json")
            gr.Markdown("### πŸ“Š Simulation Analysis & Implications (Helmholtz alias-huge)")
            analysis_table = gr.Dataframe(headers=["persona_name", "opinion", "analysis", "implications"], label="Analysis Results")

        with gr.Tab("Persona Generator"):
             with gr.Row():
                with gr.Column():
                    biz_desc = gr.Textbox(label="Business Description", lines=5)
                    cust_prof = gr.Textbox(label="Customer Profile", lines=5)
                    gen_count = gr.Number(label="Count", value=5)
                    blablador_key = gr.Textbox(label="API Key (Optional)", type="password")
                    gen_btn = gr.Button("Generate Personas")
                with gr.Column():
                    gen_out = gr.JSON(label="Generated Personas")

    nodes_state = gr.State([])
    edges_state = gr.State([])
    
    # Hidden components for JS interaction
    js_trigger = gr.Textbox(visible=False, elem_id="js_trigger_textbox")
    js_trigger_btn = gr.Button("trigger", visible=False, elem_id="js_trigger_btn")

    run_btn.click(
        fn=start_simulation,
        inputs=[sim_name, content_input, content_format, num_personas_sim, network_type_sim],
        outputs=[analysis_table, nodes_state, edges_state, current_sim_id]
    ).then(
        fn=None, inputs=[nodes_state, edges_state], outputs=None,
        js="""(nodes, edges) => {
            const container = document.getElementById('mesh-network-container');
            const data = { nodes: new vis.DataSet(nodes), edges: new vis.DataSet(edges) };
            const options = { 
                nodes: { shape: 'dot', size: 25, font: { color: '#fff', size: 16 }, color: { background: '#135bec', border: '#fff' }, shadow: true }, 
                edges: { color: 'rgba(19,91,236,0.4)', width: 2, smooth: { type: 'continuous' } }, 
                physics: { enabled: true, stabilization: false, barnesHut: { gravitationalConstant: -3000 } } 
            };
            const network = new vis.Network(container, data, options);
            network.on("click", (params) => {
                if(params.nodes.length) {
                    const node = nodes.find(n => n.id === params.nodes[0]);
                    const trigger = document.getElementById('js_trigger_textbox').querySelector('input');
                    trigger.value = node.id;
                    trigger.dispatchEvent(new Event('input'));
                    document.getElementById('js_trigger_btn').click();
                }
            });
            setInterval(() => { network.stopSimulation(); network.startSimulation(); }, 4000);
        }"""
    )

    def on_persona_click(name, sim_id):
        details = simulation_manager.get_persona(sim_id, name)
        return name, json.dumps(details, indent=2)

    js_trigger_btn.click(on_persona_click, inputs=[js_trigger, current_sim_id], outputs=[detail_name, detail_json])

    gen_btn.click(generate_personas, inputs=[biz_desc, cust_prof, gen_count, blablador_key], outputs=gen_out, api_name="generate_personas")

    # API endpoints (backward compatibility)
    with gr.Tab("API", visible=False):
        gr.Button("find_best_persona").click(lambda x: {"message": "Searching: "+x}, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="find_best_persona")
        gr.Button("generate_social_network").click(generate_social_network_api, inputs=[gr.Textbox(), gr.Number(), gr.Dropdown(choices=["scale_free", "small_world"]), gr.Textbox()], outputs=gr.JSON(), api_name="generate_social_network")
        gr.Button("predict_engagement").click(predict_engagement_api, inputs=[gr.Textbox(), gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="predict_engagement")
        gr.Button("start_simulation_async").click(start_simulation_async_api, inputs=[gr.Textbox(), gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="start_simulation_async")
        gr.Button("get_simulation_status").click(get_simulation_status_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="get_simulation_status")
        gr.Button("send_chat_message").click(send_chat_message_api, inputs=[gr.Textbox(), gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="send_chat_message")
        gr.Button("get_chat_history").click(get_chat_history_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="get_chat_history")
        gr.Button("generate_variants").click(generate_variants_api, inputs=[gr.Textbox(), gr.Number()], outputs=gr.JSON(), api_name="generate_variants")
        gr.Button("list_simulations").click(list_simulations_api, outputs=gr.JSON(), api_name="list_simulations")
        gr.Button("list_personas").click(list_personas_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="list_personas")
        gr.Button("get_persona").click(get_persona_api, inputs=[gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="get_persona")
        gr.Button("delete_simulation").click(delete_simulation_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="delete_simulation")
        gr.Button("export_simulation").click(export_simulation_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="export_simulation")
        gr.Button("get_network_graph").click(get_network_graph_api, inputs=[gr.Textbox()], outputs=gr.JSON(), api_name="get_network_graph")
        gr.Button("list_focus_groups").click(list_focus_groups_api, outputs=gr.JSON(), api_name="list_focus_groups")
        gr.Button("save_focus_group").click(save_focus_group_api, inputs=[gr.Textbox(), gr.Textbox()], outputs=gr.JSON(), api_name="save_focus_group")

if __name__ == "__main__":
    demo.launch()