Spaces:
Running
Running
File size: 35,653 Bytes
6a42990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
from tinytroupe.environment import logger, default
import copy
from datetime import datetime, timedelta
import textwrap
import random
import concurrent.futures
from tinytroupe.agent import *
from tinytroupe.utils import name_or_empty, pretty_datetime
import tinytroupe.control as control
from tinytroupe.control import transactional
from tinytroupe import utils
from tinytroupe import config_manager
from rich.console import Console
from typing import Any, TypeVar, Union
AgentOrWorld = Union["TinyPerson", "TinyWorld"]
class TinyWorld:
"""
Base class for environments.
"""
# A dict of all environments created so far.
all_environments = {} # name -> environment
# Whether to display environments communications or not, for all environments.
communication_display = True
def __init__(self, name: str=None, agents=[],
initial_datetime=datetime.now(),
interventions=[],
broadcast_if_no_target=True,
max_additional_targets_to_display=3):
"""
Initializes an environment.
Args:
name (str): The name of the environment.
agents (list): A list of agents to add to the environment.
initial_datetifme (datetime): The initial datetime of the environment, or None (i.e., explicit time is optional).
Defaults to the current datetime in the real world.
interventions (list): A list of interventions to apply in the environment at each simulation step.
broadcast_if_no_target (bool): If True, broadcast actions if the target of an action is not found.
max_additional_targets_to_display (int): The maximum number of additional targets to display in a communication. If None,
all additional targets are displayed.
"""
if name is not None:
self.name = name
else:
self.name = f"TinyWorld {utils.fresh_id(self.__class__.__name__)}"
self.current_datetime = initial_datetime
self.broadcast_if_no_target = broadcast_if_no_target
self.simulation_id = None # will be reset later if the agent is used within a specific simulation scope
self.agents = []
self.name_to_agent = {} # {agent_name: agent, agent_name_2: agent_2, ...}
self._interventions = interventions
# the buffer of communications that have been displayed so far, used for
# saving these communications to another output form later (e.g., caching)
self._displayed_communications_buffer = []
# a temporary buffer for communications target to make rendering easier
self._target_display_communications_buffer = []
self._max_additional_targets_to_display = max_additional_targets_to_display
self.console = Console()
# add the environment to the list of all environments
TinyWorld.add_environment(self)
self.add_agents(agents)
#######################################################################
# Simulation control methods
#######################################################################
@transactional()
def _step(self,
timedelta_per_step=None,
randomize_agents_order=True,
parallelize=True): # TODO have a configuration for parallelism?
"""
Performs a single step in the environment. This default implementation
simply calls makes all agents in the environment act and properly
handle the resulting actions. Subclasses might override this method to implement
different policies.
"""
# Increase current datetime if timedelta is given. This must happen before
# any other simulation updates, to make sure that the agents are acting
# in the correct time, particularly if only one step is being run.
self._advance_datetime(timedelta_per_step)
# Apply interventions.
#
# Why not in parallel? Owing to the very general nature of their potential effects,
# interventions are never parallelized, since that could introduce unforeseen race conditions.
for intervention in self._interventions:
should_apply_intervention = intervention.check_precondition()
if should_apply_intervention:
if TinyWorld.communication_display:
self._display_intervention_communication(intervention)
intervention.apply_effect()
logger.debug(f"[{self.name}] Intervention '{intervention.name}' was applied.")
# Agents can act in parallel or sequentially
if parallelize:
agents_actions = self._step_in_parallel(timedelta_per_step=timedelta_per_step)
else:
agents_actions = self._step_sequentially(timedelta_per_step=timedelta_per_step,
randomize_agents_order=randomize_agents_order)
return agents_actions
def _step_sequentially(self, timedelta_per_step=None, randomize_agents_order=True):
"""
The sequential version of the _step method to request agents to act.
"""
# agents can act in a random order
reordered_agents = copy.copy(self.agents)
if randomize_agents_order:
random.shuffle(reordered_agents)
# agents can act
agents_actions = {}
for agent in reordered_agents:
logger.debug(f"[{self.name}] Agent {name_or_empty(agent)} is acting.")
actions = agent.act(return_actions=True)
agents_actions[agent.name] = actions
self._handle_actions(agent, agent.pop_latest_actions())
return agents_actions
def _step_in_parallel(self, timedelta_per_step=None):
"""
A parallelized version of the _step method to request agents to act.
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = {executor.submit(agent.act, return_actions=True): agent for agent in self.agents}
agents_actions = {}
# Wait for all futures to complete
concurrent.futures.wait(futures.keys())
for future in futures:
agent = futures[future]
try:
actions = future.result()
agents_actions[agent.name] = actions
self._handle_actions(agent, agent.pop_latest_actions())
except Exception as exc:
logger.error(f"[{self.name}] Agent {name_or_empty(agent)} generated an exception: {exc}")
return agents_actions
def _advance_datetime(self, timedelta):
"""
Advances the current datetime of the environment by the specified timedelta.
Args:
timedelta (timedelta): The timedelta to advance the current datetime by.
"""
if timedelta is not None:
self.current_datetime += timedelta
else:
logger.info(f"[{self.name}] No timedelta provided, so the datetime was not advanced.")
@transactional()
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run(self, steps: int, timedelta_per_step=None, return_actions=False, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of steps.
Args:
steps (int): The number of steps to run the environment for.
timedelta_per_step (timedelta, optional): The time interval between steps. Defaults to None.
return_actions (bool, optional): If True, returns the actions taken by the agents. Defaults to False.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
parallelize (bool, optional): If True, agents act in parallel. Defaults to True.
Returns:
list: A list of actions taken by the agents over time, if return_actions is True. The list has this format:
[{agent_name: [action_1, action_2, ...]}, {agent_name_2: [action_1, action_2, ...]}, ...]
"""
agents_actions_over_time = []
for i in range(steps):
logger.info(f"[{self.name}] Running world simulation step {i+1} of {steps}.")
if TinyWorld.communication_display:
self._display_step_communication(cur_step=i+1, total_steps=steps, timedelta_per_step=timedelta_per_step)
agents_actions = self._step(timedelta_per_step=timedelta_per_step, randomize_agents_order=randomize_agents_order, parallelize=parallelize)
agents_actions_over_time.append(agents_actions)
if return_actions:
return agents_actions_over_time
@transactional()
def skip(self, steps: int, timedelta_per_step=None):
"""
Skips a given number of steps in the environment. That is to say, time shall pass, but no actions will be taken
by the agents or any other entity in the environment.
Args:
steps (int): The number of steps to skip.
timedelta_per_step (timedelta, optional): The time interval between steps. Defaults to None.
"""
self._advance_datetime(steps * timedelta_per_step)
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_minutes(self, minutes: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of minutes.
Args:
minutes (int): The number of minutes to run the environment for.
"""
self.run(steps=minutes, timedelta_per_step=timedelta(minutes=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_minutes(self, minutes: int):
"""
Skips a given number of minutes in the environment.
Args:
minutes (int): The number of minutes to skip.
"""
self.skip(steps=minutes, timedelta_per_step=timedelta(minutes=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_hours(self, hours: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of hours.
Args:
hours (int): The number of hours to run the environment for.
"""
self.run(steps=hours, timedelta_per_step=timedelta(hours=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_hours(self, hours: int):
"""
Skips a given number of hours in the environment.
Args:
hours (int): The number of hours to skip.
"""
self.skip(steps=hours, timedelta_per_step=timedelta(hours=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_days(self, days: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of days.
Args:
days (int): The number of days to run the environment for.
"""
self.run(steps=days, timedelta_per_step=timedelta(days=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_days(self, days: int):
"""
Skips a given number of days in the environment.
Args:
days (int): The number of days to skip.
"""
self.skip(steps=days, timedelta_per_step=timedelta(days=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_weeks(self, weeks: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of weeks.
Args:
weeks (int): The number of weeks to run the environment for.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
"""
self.run(steps=weeks, timedelta_per_step=timedelta(weeks=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_weeks(self, weeks: int):
"""
Skips a given number of weeks in the environment.
Args:
weeks (int): The number of weeks to skip.
"""
self.skip(steps=weeks, timedelta_per_step=timedelta(weeks=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_months(self, months: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of months.
Args:
months (int): The number of months to run the environment for.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
"""
self.run(steps=months, timedelta_per_step=timedelta(weeks=4), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_months(self, months: int):
"""
Skips a given number of months in the environment.
Args:
months (int): The number of months to skip.
"""
self.skip(steps=months, timedelta_per_step=timedelta(weeks=4))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_years(self, years: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of years.
Args:
years (int): The number of years to run the environment for.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
"""
self.run(steps=years, timedelta_per_step=timedelta(days=365), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_years(self, years: int):
"""
Skips a given number of years in the environment.
Args:
years (int): The number of years to skip.
"""
self.skip(steps=years, timedelta_per_step=timedelta(days=365))
#######################################################################
# Agent management methods
#######################################################################
def add_agents(self, agents: list):
"""
Adds a list of agents to the environment.
Args:
agents (list): A list of agents to add to the environment.
"""
for agent in agents:
self.add_agent(agent)
return self # for chaining
def add_agent(self, agent: TinyPerson):
"""
Adds an agent to the environment. The agent must have a unique name within the environment.
Args:
agent (TinyPerson): The agent to add to the environment.
Raises:
ValueError: If the agent name is not unique within the environment.
"""
# check if the agent is not already in the environment
if agent not in self.agents:
logger.debug(f"Adding agent {agent.name} to the environment.")
# Agent names must be unique in the environment.
# Check if the agent name is already there.
if agent.name not in self.name_to_agent:
agent.environment = self
self.agents.append(agent)
self.name_to_agent[agent.name] = agent
else:
raise ValueError(f"Agent names must be unique, but '{agent.name}' is already in the environment.")
else:
logger.warn(f"Agent {agent.name} is already in the environment.")
return self # for chaining
def remove_agent(self, agent: TinyPerson):
"""
Removes an agent from the environment.
Args:
agent (TinyPerson): The agent to remove from the environment.
"""
logger.debug(f"Removing agent {agent.name} from the environment.")
self.agents.remove(agent)
del self.name_to_agent[agent.name]
return self # for chaining
def remove_all_agents(self):
"""
Removes all agents from the environment.
"""
logger.debug(f"Removing all agents from the environment.")
self.agents = []
self.name_to_agent = {}
return self # for chaining
def get_agent_by_name(self, name: str) -> TinyPerson:
"""
Returns the agent with the specified name. If no agent with that name exists in the environment,
returns None.
Args:
name (str): The name of the agent to return.
Returns:
TinyPerson: The agent with the specified name.
"""
if name in self.name_to_agent:
return self.name_to_agent[name]
else:
return None
#######################################################################
# Intervention management methods
#######################################################################
def add_intervention(self, intervention):
"""
Adds an intervention to the environment.
Args:
intervention: The intervention to add to the environment.
"""
self._interventions.append(intervention)
#######################################################################
# Action handlers
#
# Specific actions issued by agents are handled by the environment,
# because they have effects beyond the agent itself.
#######################################################################
@transactional()
def _handle_actions(self, source: TinyPerson, actions: list):
"""
Handles the actions issued by the agents.
Args:
source (TinyPerson): The agent that issued the actions.
actions (list): A list of actions issued by the agents. Each action is actually a
JSON specification.
"""
for action in actions:
action_type = action["type"] # this is the only required field
content = action["content"] if "content" in action else None
target = action["target"] if "target" in action else None
logger.debug(f"[{self.name}] Handling action {action_type} from agent {name_or_empty(source)}. Content: {content}, target: {target}.")
# only some actions require the enviroment to intervene
if action_type == "REACH_OUT":
self._handle_reach_out(source, content, target)
elif action_type == "TALK":
self._handle_talk(source, content, target)
@transactional()
def _handle_reach_out(self, source_agent: TinyPerson, content: str, target: str):
"""
Handles the REACH_OUT action. This default implementation always allows REACH_OUT to succeed.
Subclasses might override this method to implement different policies.
Args:
source_agent (TinyPerson): The agent that issued the REACH_OUT action.
content (str): The content of the message.
target (str): The target of the message.
"""
# This default implementation always allows REACH_OUT to suceed.
target_agent = self.get_agent_by_name(target)
if target_agent is not None:
source_agent.make_agent_accessible(target_agent)
target_agent.make_agent_accessible(source_agent)
source_agent.socialize(f"{name_or_empty(target_agent)} was successfully reached out, and is now available for interaction.", source=self)
target_agent.socialize(f"{name_or_empty(source_agent)} reached out to you, and is now available for interaction.", source=self)
else:
logger.debug(f"[{self.name}] REACH_OUT action failed: target agent '{target}' not found.")
@transactional()
def _handle_talk(self, source_agent: TinyPerson, content: str, target: str):
"""
Handles the TALK action by delivering the specified content to the specified target.
Args:
source_agent (TinyPerson): The agent that issued the TALK action.
content (str): The content of the message.
target (str, optional): The target of the message.
"""
target_agent = self.get_agent_by_name(target)
logger.debug(f"[{self.name}] Delivering message from {name_or_empty(source_agent)} to {name_or_empty(target_agent)}.")
if target_agent is not None:
target_agent.listen(content, source=source_agent)
elif self.broadcast_if_no_target:
self.broadcast(content, source=source_agent)
#######################################################################
# Interaction methods
#######################################################################
@transactional()
def broadcast(self, speech: str, source: AgentOrWorld=None):
"""
Delivers a speech to all agents in the environment.
Args:
speech (str): The content of the message.
source (AgentOrWorld, optional): The agent or environment that issued the message. Defaults to None.
"""
logger.debug(f"[{self.name}] Broadcasting message: '{speech}'.")
for agent in self.agents:
# do not deliver the message to the source
if agent != source:
agent.listen(speech, source=source)
@transactional()
def broadcast_thought(self, thought: str, source: AgentOrWorld=None):
"""
Broadcasts a thought to all agents in the environment.
Args:
thought (str): The content of the thought.
"""
logger.debug(f"[{self.name}] Broadcasting thought: '{thought}'.")
for agent in self.agents:
agent.think(thought)
@transactional()
def broadcast_internal_goal(self, internal_goal: str):
"""
Broadcasts an internal goal to all agents in the environment.
Args:
internal_goal (str): The content of the internal goal.
"""
logger.debug(f"[{self.name}] Broadcasting internal goal: '{internal_goal}'.")
for agent in self.agents:
agent.internalize_goal(internal_goal)
@transactional()
def broadcast_context_change(self, context:list):
"""
Broadcasts a context change to all agents in the environment.
Args:
context (list): The content of the context change.
"""
logger.debug(f"[{self.name}] Broadcasting context change: '{context}'.")
for agent in self.agents:
agent.change_context(context)
def make_everyone_accessible(self):
"""
Makes all agents in the environment accessible to each other.
"""
for agent_1 in self.agents:
for agent_2 in self.agents:
if agent_1 != agent_2:
agent_1.make_agent_accessible(agent_2)
###########################################################
# Formatting conveniences
###########################################################
# TODO better names for these "display" methods
def _display_step_communication(self, cur_step, total_steps, timedelta_per_step=None):
"""
Displays the current communication and stores it in a buffer for later use.
"""
rendering = self._pretty_step(cur_step=cur_step, total_steps=total_steps, timedelta_per_step=timedelta_per_step)
self._push_and_display_latest_communication({"kind": 'step', "rendering": rendering, "content": None, "source": None, "target": None})
def _display_intervention_communication(self, intervention):
"""
Displays the current intervention communication and stores it in a buffer for later use.
"""
rendering = self._pretty_intervention(intervention)
self._push_and_display_latest_communication({"kind": 'intervention', "rendering": rendering, "content": None, "source": None, "target": None})
def _push_and_display_latest_communication(self, communication):
"""
Pushes the latest communications to the agent's buffer.
"""
#
# check if the communication is just repeating the last one for a different target
#
if len(self._displayed_communications_buffer) > 0:
# get values from last communication
last_communication = self._displayed_communications_buffer[-1]
last_kind = last_communication["kind"]
last_target = last_communication["target"]
last_source = last_communication["source"]
if last_kind == 'action':
last_content = last_communication["content"]["action"]["content"]
last_type = last_communication["content"]["action"]["type"]
elif last_kind == 'stimulus':
last_content = last_communication["content"]["stimulus"]["content"]
last_type = last_communication["content"]["stimulus"]["type"]
elif last_kind == 'stimuli':
last_stimulus = last_communication["content"]["stimuli"][0]
last_content = last_stimulus["content"]
last_type = last_stimulus["type"]
else:
last_content = None
last_type = None
# get values from current communication
current_kind = communication["kind"]
current_target = communication["target"]
current_source = communication["source"]
if current_kind == 'action':
current_content = communication["content"]["action"]["content"]
current_type = communication["content"]["action"]["type"]
elif current_kind == 'stimulus':
current_content = communication["content"]["stimulus"]["content"]
current_type = communication["content"]["stimulus"]["type"]
elif current_kind == 'stimuli':
current_stimulus = communication["content"]["stimuli"][0]
current_content = current_stimulus["content"]
current_type = current_stimulus["type"]
else:
current_content = None
current_type = None
# if we are repeating the last communication, let's simplify the rendering
if (last_source == current_source) and (last_type == current_type) and (last_kind == current_kind) and \
(last_content is not None) and (last_content == current_content) and \
(current_target is not None):
self._target_display_communications_buffer.append(current_target)
rich_style = utils.RichTextStyle.get_style_for(last_kind, last_type)
# print the additional target a limited number of times if a max is set, or
# always if no max is set.
if (self._max_additional_targets_to_display is None) or\
len(self._target_display_communications_buffer) < self._max_additional_targets_to_display:
communication["rendering"] = " " * len(last_source) + f"[{rich_style}] + --> [underline]{current_target}[/][/]"
elif len(self._target_display_communications_buffer) == self._max_additional_targets_to_display:
communication["rendering"] = " " * len(last_source) + f"[{rich_style}] + --> ...others...[/]"
else: # don't display anything anymore
communication["rendering"] = None
else:
# no repetition, so just display the communication and reset the targets buffer
self._target_display_communications_buffer = [] # resets
else:
# no repetition, so just display the communication and reset the targets buffer
self._target_display_communications_buffer = [] # resets
self._displayed_communications_buffer.append(communication)
self._display(communication)
def pop_and_display_latest_communications(self):
"""
Pops the latest communications and displays them.
"""
communications = self._displayed_communications_buffer
self._displayed_communications_buffer = []
for communication in communications:
self._display(communication)
return communications
def _display(self, communication:dict):
# unpack the rendering to find more info
content = communication["rendering"]
kind = communication["kind"]
if content is not None:
# render as appropriate
if kind == 'step':
self.console.rule(content)
else:
self.console.print(content)
def clear_communications_buffer(self):
"""
Cleans the communications buffer.
"""
self._displayed_communications_buffer = []
def __repr__(self):
return f"TinyWorld(name='{self.name}')"
def _pretty_step(self, cur_step, total_steps, timedelta_per_step=None):
rendering = f"{self.name} step {cur_step} of {total_steps}"
if timedelta_per_step is not None:
rendering += f" ({pretty_datetime(self.current_datetime)})"
return rendering
def _pretty_intervention(self, intervention):
indent = " > "
justification = textwrap.fill(
intervention.precondition_justification(),
width=TinyPerson.PP_TEXT_WIDTH,
initial_indent=indent,
subsequent_indent=indent,
)
rich_style = utils.RichTextStyle.get_style_for("intervention")
rendering = f"[{rich_style}] :zap: [bold] <<{intervention.name}>> Triggered, effects are being applied...[/] \n" + \
f"[italic]{justification}[/][/]"
# TODO add details about why the intervention was applied
return rendering
def pp_current_interactions(self, simplified=True, skip_system=True):
"""
Pretty prints the current messages from agents in this environment.
"""
print(self.pretty_current_interactions(simplified=simplified, skip_system=skip_system))
def pretty_current_interactions(self, simplified=True, skip_system=True, max_content_length=default["max_content_display_length"], first_n=None, last_n=None, include_omission_info:bool=True):
"""
Returns a pretty, readable, string with the current messages of agents in this environment.
"""
agent_contents = []
for agent in self.agents:
agent_content = f"#### Interactions from the point of view of {agent.name} agent:\n"
agent_content += f"**BEGIN AGENT {agent.name} HISTORY.**\n "
agent_content += agent.pretty_current_interactions(simplified=simplified, skip_system=skip_system, max_content_length=max_content_length, first_n=first_n, last_n=last_n, include_omission_info=include_omission_info) + "\n"
agent_content += f"**FINISHED AGENT {agent.name} HISTORY.**\n\n"
agent_contents.append(agent_content)
return "\n".join(agent_contents)
#######################################################################
# IO
#######################################################################
def encode_complete_state(self) -> dict:
"""
Encodes the complete state of the environment in a dictionary.
Returns:
dict: A dictionary encoding the complete state of the environment.
"""
to_copy = copy.copy(self.__dict__)
# remove the logger and other fields
del to_copy['console']
del to_copy['agents']
del to_copy['name_to_agent']
del to_copy['current_datetime']
del to_copy['_interventions'] # TODO: encode interventions
state = copy.deepcopy(to_copy)
# agents are encoded separately
state["agents"] = [agent.encode_complete_state() for agent in self.agents]
# datetime also has to be encoded separately
state["current_datetime"] = self.current_datetime.isoformat()
return state
def decode_complete_state(self, state:dict):
"""
Decodes the complete state of the environment from a dictionary.
Args:
state (dict): A dictionary encoding the complete state of the environment.
Returns:
Self: The environment decoded from the dictionary.
"""
state = copy.deepcopy(state)
#################################
# restore agents in-place
#################################
self.remove_all_agents()
for agent_state in state["agents"]:
try:
try:
agent = TinyPerson.get_agent_by_name(agent_state["name"])
except Exception as e:
raise ValueError(f"Could not find agent {agent_state['name']} for environment {self.name}.") from e
agent.decode_complete_state(agent_state)
self.add_agent(agent)
except Exception as e:
raise ValueError(f"Could not decode agent {agent_state['name']} for environment {self.name}.") from e
# remove the agent states to update the rest of the environment
del state["agents"]
# restore datetime
state["current_datetime"] = datetime.fromisoformat(state["current_datetime"])
# restore other fields
self.__dict__.update(state)
return self
@staticmethod
def add_environment(environment):
"""
Adds an environment to the list of all environments. Environment names must be unique,
so if an environment with the same name already exists, an error is raised.
"""
if environment.name in TinyWorld.all_environments:
raise ValueError(f"Environment names must be unique, but '{environment.name}' is already defined.")
else:
TinyWorld.all_environments[environment.name] = environment
@staticmethod
def set_simulation_for_free_environments(simulation):
"""
Sets the simulation if it is None. This allows free environments to be captured by specific simulation scopes
if desired.
"""
for environment in TinyWorld.all_environments.values():
if environment.simulation_id is None:
simulation.add_environment(environment)
@staticmethod
def get_environment_by_name(name: str):
"""
Returns the environment with the specified name. If no environment with that name exists,
returns None.
Args:
name (str): The name of the environment to return.
Returns:
TinyWorld: The environment with the specified name.
"""
if name in TinyWorld.all_environments:
return TinyWorld.all_environments[name]
else:
return None
@staticmethod
def clear_environments():
"""
Clears the list of all environments.
"""
TinyWorld.all_environments = {}
|