Spaces:
Running
Running
File size: 30,127 Bytes
6a42990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
"""
Provides mechanisms for creating understanding the characteristics of agent populations, such as
their age distribution, typical interests, and so on.
Guideline for plotting the methods: all plot methods should also return a Pandas dataframe with the data used for
plotting.
"""
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from typing import List, Dict, Any, Optional, Union, Callable
from collections import Counter, defaultdict
import warnings
# Handle TinyPerson import gracefully
try:
from tinytroupe.agent import TinyPerson
except ImportError:
# Fallback if import fails
TinyPerson = None
class Profiler:
"""
Advanced profiler for analyzing agent population characteristics with support for
complex attributes, statistical analysis, and comprehensive visualizations.
"""
def __init__(self, attributes: List[str] = ["age", "occupation.title", "nationality"]) -> None:
self.attributes = attributes
self.attributes_distributions = {} # attribute -> DataFrame
self.agents_data = None # Store processed agent data
self.analysis_results = {} # Store various analysis results
# Set up better plotting style
plt.style.use('default')
sns.set_palette("husl")
def profile(self, agents: Union[List[dict], List[TinyPerson]], plot: bool = True,
advanced_analysis: bool = True) -> Dict[str, Any]:
"""
Profiles the given agents with comprehensive analysis.
Args:
agents: The agents to be profiled (either dicts or TinyPerson objects)
plot: Whether to generate visualizations
advanced_analysis: Whether to perform advanced statistical analysis
Returns:
Dictionary containing all analysis results
"""
# Convert agents to consistent format
self.agents_data = self._prepare_agent_data(agents)
# Basic attribute distributions
self.attributes_distributions = self._compute_attributes_distributions(self.agents_data)
if advanced_analysis:
self._perform_advanced_analysis()
if plot:
self.render(advanced=advanced_analysis)
return {
'distributions': self.attributes_distributions,
'analysis': self.analysis_results,
'summary_stats': self._generate_summary_statistics()
}
def _prepare_agent_data(self, agents: Union[List[dict], List[TinyPerson]]) -> List[Dict[str, Any]]:
"""Convert agents to a consistent dictionary format for analysis."""
processed_agents = []
for agent in agents:
if isinstance(agent, TinyPerson):
# Extract data from TinyPerson object
agent_data = self._extract_tinyperson_data(agent)
else:
agent_data = agent.copy()
processed_agents.append(agent_data)
return processed_agents
def _extract_tinyperson_data(self, agent: TinyPerson) -> Dict[str, Any]:
"""Extract comprehensive data from a TinyPerson object."""
data = {}
# Basic persona attributes
if hasattr(agent, '_persona') and agent._persona:
data.update(agent._persona)
# Mental state information
if hasattr(agent, '_mental_state') and agent._mental_state:
mental_state = agent._mental_state
data['current_emotions'] = mental_state.get('emotions')
data['current_goals'] = mental_state.get('goals', [])
data['current_context'] = mental_state.get('context', [])
data['accessible_agents_count'] = len(mental_state.get('accessible_agents', []))
# Behavioral metrics
if hasattr(agent, 'actions_count'):
data['actions_count'] = agent.actions_count
if hasattr(agent, 'stimuli_count'):
data['stimuli_count'] = agent.stimuli_count
# Memory statistics
if hasattr(agent, 'episodic_memory') and agent.episodic_memory:
try:
# Get total memory size including both committed memory and current episode buffer
memory_size = len(agent.episodic_memory.memory) + len(agent.episodic_memory.episodic_buffer)
data['episodic_memory_size'] = memory_size
except AttributeError:
# Fallback if memory structure is different
data['episodic_memory_size'] = 0
# Social connections
if hasattr(agent, '_accessible_agents'):
data['social_connections'] = len(agent._accessible_agents)
return data
def _perform_advanced_analysis(self):
"""Perform advanced statistical and behavioral analysis."""
self.analysis_results = {}
# Demographic analysis
self.analysis_results['demographics'] = self._analyze_demographics()
# Behavioral patterns
self.analysis_results['behavioral_patterns'] = self._analyze_behavioral_patterns()
# Social network analysis
self.analysis_results['social_analysis'] = self._analyze_social_patterns()
# Personality clustering
self.analysis_results['personality_clusters'] = self._analyze_personality_clusters()
# Correlations
self.analysis_results['correlations'] = self._analyze_correlations()
def _analyze_demographics(self) -> Dict[str, Any]:
"""Analyze demographic patterns in the population."""
demographics = {}
# Age analysis
ages = [agent.get('age') for agent in self.agents_data if agent.get('age') is not None]
if ages:
demographics['age_stats'] = {
'mean': np.mean(ages),
'median': np.median(ages),
'std': np.std(ages),
'range': (min(ages), max(ages)),
'distribution': 'normal' if self._test_normality(ages) else 'non-normal'
}
# Occupation diversity
occupations = [agent.get('occupation', {}).get('title') if isinstance(agent.get('occupation'), dict)
else agent.get('occupation') for agent in self.agents_data]
occupations = [occ for occ in occupations if occ is not None]
if occupations:
occ_counts = Counter(occupations)
demographics['occupation_diversity'] = {
'unique_count': len(occ_counts),
'diversity_index': self._calculate_diversity_index(occ_counts),
'most_common': occ_counts.most_common(5)
}
# Geographic distribution
nationalities = [agent.get('nationality') for agent in self.agents_data if agent.get('nationality')]
if nationalities:
nat_counts = Counter(nationalities)
demographics['geographic_diversity'] = {
'unique_countries': len(nat_counts),
'diversity_index': self._calculate_diversity_index(nat_counts),
'distribution': dict(nat_counts)
}
return demographics
def _analyze_behavioral_patterns(self) -> Dict[str, Any]:
"""Analyze behavioral patterns across the population."""
behavioral = {}
# Activity levels
actions_data = [agent.get('actions_count', 0) for agent in self.agents_data]
stimuli_data = [agent.get('stimuli_count', 0) for agent in self.agents_data]
if any(actions_data):
behavioral['activity_levels'] = {
'actions_mean': np.mean(actions_data),
'actions_std': np.std(actions_data),
'stimuli_mean': np.mean(stimuli_data),
'stimuli_std': np.std(stimuli_data),
'activity_ratio': np.mean(actions_data) / max(np.mean(stimuli_data), 1)
}
# Goal patterns
all_goals = []
for agent in self.agents_data:
goals = agent.get('current_goals', [])
if isinstance(goals, list):
all_goals.extend(goals)
if all_goals:
goal_counts = Counter(all_goals)
behavioral['goal_patterns'] = {
'common_goals': goal_counts.most_common(10),
'goal_diversity': self._calculate_diversity_index(goal_counts)
}
return behavioral
def _analyze_social_patterns(self) -> Dict[str, Any]:
"""Analyze social connection patterns."""
social = {}
# Social connectivity
connections = [agent.get('social_connections', 0) for agent in self.agents_data]
accessible_counts = [agent.get('accessible_agents_count', 0) for agent in self.agents_data]
if any(connections + accessible_counts):
social['connectivity'] = {
'avg_connections': np.mean(connections),
'avg_accessible': np.mean(accessible_counts),
'connectivity_distribution': self._categorize_connectivity(connections),
'social_isolation_rate': sum(1 for c in connections if c == 0) / len(connections)
}
return social
def _analyze_personality_clusters(self) -> Dict[str, Any]:
"""Identify personality-based clusters if Big Five data is available."""
personality = {}
# Extract Big Five traits if available
big_five_data = []
for agent in self.agents_data:
if 'big_five' in agent and isinstance(agent['big_five'], dict):
traits = agent['big_five']
# Convert text descriptions to numerical values (simplified approach)
numerical_traits = {}
for trait, value in traits.items():
if isinstance(value, str):
if 'high' in value.lower():
numerical_traits[trait] = 0.8
elif 'medium' in value.lower():
numerical_traits[trait] = 0.5
elif 'low' in value.lower():
numerical_traits[trait] = 0.2
else:
numerical_traits[trait] = 0.5 # Default
else:
numerical_traits[trait] = value
if len(numerical_traits) == 5: # Full Big Five
big_five_data.append(numerical_traits)
if len(big_five_data) >= 2: # Need minimum agents for analysis (reduced from >3 to >=2)
df_traits = pd.DataFrame(big_five_data)
# Simple clustering based on dominant traits
personality['trait_analysis'] = {
'average_traits': df_traits.mean().to_dict(),
'trait_correlations': df_traits.corr().to_dict() if len(big_five_data) > 1 else {},
'dominant_traits': self._identify_dominant_traits(df_traits)
}
return personality
def _analyze_correlations(self) -> Dict[str, Any]:
"""Analyze correlations between different attributes."""
correlations = {}
# Create a numerical dataset for correlation analysis
numerical_data = {}
for agent in self.agents_data:
for attr in ['age', 'actions_count', 'stimuli_count', 'social_connections']:
if attr not in numerical_data:
numerical_data[attr] = []
numerical_data[attr].append(agent.get(attr, 0))
if len(numerical_data) > 1:
df_corr = pd.DataFrame(numerical_data)
correlation_matrix = df_corr.corr()
# Find strong correlations (> 0.5)
strong_correlations = []
for i in range(len(correlation_matrix.columns)):
for j in range(i+1, len(correlation_matrix.columns)):
corr_value = correlation_matrix.iloc[i, j]
if abs(corr_value) > 0.5:
strong_correlations.append({
'variables': (correlation_matrix.columns[i], correlation_matrix.columns[j]),
'correlation': corr_value
})
correlations['numerical_correlations'] = strong_correlations
correlations['correlation_matrix'] = correlation_matrix.to_dict()
return correlations
def render(self, advanced: bool = True) -> None:
"""
Renders comprehensive visualizations of the agent population analysis.
"""
# Basic attribute distributions
self._plot_basic_distributions()
if advanced and self.analysis_results:
self._plot_advanced_analysis()
def _plot_basic_distributions(self) -> None:
"""Plot basic attribute distributions with improved styling."""
n_attrs = len(self.attributes)
if n_attrs == 0:
return
# Calculate subplot layout
n_cols = min(3, n_attrs)
n_rows = (n_attrs + n_cols - 1) // n_cols
fig, axes = plt.subplots(n_rows, n_cols, figsize=(5 * n_cols, 4 * n_rows))
if n_attrs == 1:
axes = [axes]
elif n_rows == 1:
axes = [axes] if n_attrs == 1 else axes
else:
axes = axes.flatten()
for i, attribute in enumerate(self.attributes):
ax = axes[i] if n_attrs > 1 else axes[0]
if attribute in self.attributes_distributions:
df = self.attributes_distributions[attribute]
# Create better visualizations based on data type
if len(df) <= 15: # Categorical data
df.plot(kind='bar', ax=ax, color=sns.color_palette("husl", len(df)))
ax.set_title(f"{attribute.replace('_', ' ').title()} Distribution", fontsize=12, fontweight='bold')
ax.tick_params(axis='x', rotation=45)
else: # Many categories - use horizontal bar for readability
df.head(15).plot(kind='barh', ax=ax, color=sns.color_palette("husl", 15))
ax.set_title(f"Top 15 {attribute.replace('_', ' ').title()}", fontsize=12, fontweight='bold')
ax.grid(axis='y', alpha=0.3)
ax.set_xlabel('Count')
# Hide empty subplots
for i in range(n_attrs, len(axes)):
axes[i].set_visible(False)
plt.tight_layout()
plt.show()
def _plot_advanced_analysis(self) -> None:
"""Create advanced visualizations for the analysis results."""
# 1. Demographics overview
if 'demographics' in self.analysis_results:
self._plot_demographics()
# 2. Behavioral patterns
if 'behavioral_patterns' in self.analysis_results:
self._plot_behavioral_patterns()
# 3. Correlation heatmap
if 'correlations' in self.analysis_results and 'correlation_matrix' in self.analysis_results['correlations']:
self._plot_correlation_heatmap()
def _plot_demographics(self) -> None:
"""Plot demographic analysis results."""
demo = self.analysis_results['demographics']
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle('Population Demographics Analysis', fontsize=16, fontweight='bold')
# Age distribution
if 'age_stats' in demo:
ages = [agent.get('age') for agent in self.agents_data if agent.get('age') is not None]
axes[0, 0].hist(ages, bins=10, alpha=0.7, color='skyblue', edgecolor='black')
axes[0, 0].axvline(demo['age_stats']['mean'], color='red', linestyle='--',
label=f"Mean: {demo['age_stats']['mean']:.1f}")
axes[0, 0].set_title('Age Distribution')
axes[0, 0].set_xlabel('Age')
axes[0, 0].set_ylabel('Count')
axes[0, 0].legend()
# Occupation diversity
if 'occupation_diversity' in demo:
occ_data = demo['occupation_diversity']['most_common']
if occ_data:
occs, counts = zip(*occ_data)
axes[0, 1].pie(counts, labels=occs, autopct='%1.1f%%')
axes[0, 1].set_title('Top Occupations')
# Geographic distribution
if 'geographic_diversity' in demo:
geo_data = demo['geographic_diversity']['distribution']
if geo_data:
countries = list(geo_data.keys())[:10] # Top 10
counts = [geo_data[c] for c in countries]
axes[1, 0].barh(countries, counts, color='lightcoral')
axes[1, 0].set_title('Geographic Distribution')
axes[1, 0].set_xlabel('Count')
# Diversity metrics
diversity_metrics = []
diversity_values = []
if 'occupation_diversity' in demo:
diversity_metrics.append('Occupation\nDiversity')
diversity_values.append(demo['occupation_diversity']['diversity_index'])
if 'geographic_diversity' in demo:
diversity_metrics.append('Geographic\nDiversity')
diversity_values.append(demo['geographic_diversity']['diversity_index'])
if diversity_metrics:
axes[1, 1].bar(diversity_metrics, diversity_values, color='lightgreen')
axes[1, 1].set_title('Diversity Indices')
axes[1, 1].set_ylabel('Diversity Score')
axes[1, 1].set_ylim(0, 1)
plt.tight_layout()
plt.show()
def _plot_behavioral_patterns(self) -> None:
"""Plot behavioral analysis results."""
behavioral = self.analysis_results['behavioral_patterns']
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
fig.suptitle('Behavioral Patterns Analysis', fontsize=16, fontweight='bold')
# Activity levels scatter plot
if 'activity_levels' in behavioral:
actions_data = [agent.get('actions_count', 0) for agent in self.agents_data]
stimuli_data = [agent.get('stimuli_count', 0) for agent in self.agents_data]
axes[0].scatter(stimuli_data, actions_data, alpha=0.6, color='purple')
axes[0].set_xlabel('Stimuli Count')
axes[0].set_ylabel('Actions Count')
axes[0].set_title('Activity Patterns')
# Add trend line
if len(stimuli_data) > 1 and len(actions_data) > 1:
z = np.polyfit(stimuli_data, actions_data, 1)
p = np.poly1d(z)
axes[0].plot(stimuli_data, p(stimuli_data), "r--", alpha=0.8)
# Goal patterns
if 'goal_patterns' in behavioral and behavioral['goal_patterns']['common_goals']:
goals, counts = zip(*behavioral['goal_patterns']['common_goals'][:8])
axes[1].barh(range(len(goals)), counts, color='orange')
axes[1].set_yticks(range(len(goals)))
axes[1].set_yticklabels([g[:30] + '...' if len(str(g)) > 30 else str(g) for g in goals])
axes[1].set_xlabel('Frequency')
axes[1].set_title('Common Goals')
plt.tight_layout()
plt.show()
def _plot_correlation_heatmap(self) -> None:
"""Plot correlation heatmap for numerical attributes."""
corr_data = self.analysis_results['correlations']['correlation_matrix']
corr_df = pd.DataFrame(corr_data)
plt.figure(figsize=(8, 6))
sns.heatmap(corr_df, annot=True, cmap='coolwarm', center=0,
square=True, cbar_kws={'label': 'Correlation Coefficient'})
plt.title('Attribute Correlations Heatmap', fontsize=14, fontweight='bold')
plt.tight_layout()
plt.show()
def _compute_attributes_distributions(self, agents: list) -> dict:
"""
Computes the distributions of the attributes for the agents.
"""
distributions = {}
for attribute in self.attributes:
distributions[attribute] = self._compute_attribute_distribution(agents, attribute)
return distributions
def _compute_attribute_distribution(self, agents: list, attribute: str) -> pd.DataFrame:
"""
Computes the distribution of a given attribute with support for nested attributes.
"""
values = []
for agent in agents:
value = self._get_nested_attribute(agent, attribute)
values.append(value)
# Handle None values
values = [v for v in values if v is not None]
if not values:
return pd.DataFrame()
# Convert mixed types to string for consistent sorting
try:
value_counts = pd.Series(values).value_counts().sort_index()
except TypeError:
# Handle mixed data types by converting to strings
string_values = [str(v) for v in values]
value_counts = pd.Series(string_values).value_counts().sort_index()
return value_counts
def _get_nested_attribute(self, agent: dict, attribute: str) -> Any:
"""Get nested attribute using dot notation (e.g., 'occupation.title')."""
keys = attribute.split('.')
value = agent
for key in keys:
if isinstance(value, dict) and key in value:
value = value[key]
else:
return None
return value
# Utility methods for advanced analysis
def _test_normality(self, data: List[float]) -> bool:
"""Simple normality test using skewness."""
if len(data) < 3:
return False
skewness = pd.Series(data).skew()
return abs(skewness) < 0.3 # Stringent normality test - threshold to catch bimodal distributions
def _calculate_diversity_index(self, counts: Counter) -> float:
"""Calculate Shannon diversity index."""
total = sum(counts.values())
if total <= 1:
return 0.0
diversity = 0
for count in counts.values():
if count > 0:
p = count / total
diversity -= p * np.log(p)
return diversity / np.log(len(counts)) if len(counts) > 1 else 0
def _categorize_connectivity(self, connections: List[int]) -> Dict[str, int]:
"""Categorize agents by their connectivity level."""
categories = {'isolated': 0, 'low': 0, 'medium': 0, 'high': 0}
for conn in connections:
if conn == 0:
categories['isolated'] += 1
elif conn <= 2:
categories['low'] += 1
elif conn <= 5:
categories['medium'] += 1
else:
categories['high'] += 1
return categories
def _identify_dominant_traits(self, traits_df: pd.DataFrame) -> Dict[str, str]:
"""Identify the dominant personality traits in the population."""
trait_means = traits_df.mean()
dominant = {}
for trait, mean_value in trait_means.items():
if mean_value > 0.6:
dominant[trait] = 'high'
elif mean_value < 0.4:
dominant[trait] = 'low'
else:
dominant[trait] = 'moderate'
return dominant
def _generate_summary_statistics(self) -> Dict[str, Any]:
"""Generate comprehensive summary statistics."""
summary = {
'total_agents': len(self.agents_data),
'attributes_analyzed': len(self.attributes),
'data_completeness': {}
}
# Calculate data completeness for each attribute - handle empty data
if len(self.agents_data) > 0:
for attr in self.attributes:
non_null_count = sum(1 for agent in self.agents_data
if self._get_nested_attribute(agent, attr) is not None)
summary['data_completeness'][attr] = non_null_count / len(self.agents_data)
else:
# No agents - set all completeness to 0
for attr in self.attributes:
summary['data_completeness'][attr] = 0.0
return summary
def export_analysis_report(self, filename: str = "agent_population_analysis.txt") -> None:
"""Export a comprehensive text report of the analysis."""
with open(filename, 'w', encoding="utf-8", errors="replace") as f:
f.write("AGENT POPULATION ANALYSIS REPORT\n")
f.write("=" * 50 + "\n\n")
def export_analysis_report(self, filename: str = "agent_population_analysis.txt") -> None:
"""Export a comprehensive text report of the analysis."""
with open(filename, 'w', encoding="utf-8", errors="replace") as f:
f.write("AGENT POPULATION ANALYSIS REPORT\n")
f.write("=" * 50 + "\n\n")
# Summary statistics - always generate from current data
summary = self._generate_summary_statistics()
f.write(f"Total Agents Analyzed: {summary['total_agents']}\n")
f.write(f"Attributes Analyzed: {summary['attributes_analyzed']}\n\n")
f.write("Data Completeness:\n")
for attr, completeness in summary['data_completeness'].items():
f.write(f" {attr}: {completeness:.2%}\n")
f.write("\n")
# Demographics
if 'demographics' in self.analysis_results:
demo = self.analysis_results['demographics']
f.write("DEMOGRAPHICS\n")
f.write("-" * 20 + "\n")
if 'age_stats' in demo:
age_stats = demo['age_stats']
f.write(f"Age Statistics:\n")
f.write(f" Mean: {age_stats['mean']:.1f} years\n")
f.write(f" Median: {age_stats['median']:.1f} years\n")
f.write(f" Range: {age_stats['range'][0]}-{age_stats['range'][1]} years\n\n")
if 'occupation_diversity' in demo:
occ_div = demo['occupation_diversity']
f.write(f"Occupation Diversity:\n")
f.write(f" Unique Occupations: {occ_div['unique_count']}\n")
f.write(f" Diversity Index: {occ_div['diversity_index']:.3f}\n\n")
# Behavioral patterns
if 'behavioral_patterns' in self.analysis_results:
behavioral = self.analysis_results['behavioral_patterns']
f.write("BEHAVIORAL PATTERNS\n")
f.write("-" * 20 + "\n")
if 'activity_levels' in behavioral:
activity = behavioral['activity_levels']
f.write(f"Activity Levels:\n")
f.write(f" Average Actions: {activity['actions_mean']:.1f}\n")
f.write(f" Average Stimuli: {activity['stimuli_mean']:.1f}\n")
f.write(f" Activity Ratio: {activity['activity_ratio']:.2f}\n\n")
print(f"Analysis report exported to {filename}")
def add_custom_analysis(self, name: str, analysis_func: Callable[[List[Dict]], Any]) -> None:
"""
Add a custom analysis function that will be executed during profiling.
Args:
name: Name for the custom analysis
analysis_func: Function that takes agent data and returns analysis results
"""
if not hasattr(self, '_custom_analyses'):
self._custom_analyses = {}
self._custom_analyses[name] = analysis_func
def compare_populations(self, other_agents: Union[List[dict], List[TinyPerson]],
attributes: Optional[List[str]] = None) -> Dict[str, Any]:
"""
Compare this population with another population.
Args:
other_agents: Another set of agents to compare with
attributes: Specific attributes to compare (uses self.attributes if None)
Returns:
Comparison results
"""
if attributes is None:
attributes = self.attributes
# Create temporary profiler for the other population
other_profiler = Profiler(attributes)
other_results = other_profiler.profile(other_agents, plot=False, advanced_analysis=True)
comparison = {
'population_sizes': {
'current': len(self.agents_data),
'comparison': len(other_profiler.agents_data)
},
'attribute_comparisons': {}
}
# Compare distributions for each attribute
for attr in attributes:
if (attr in self.attributes_distributions and
attr in other_profiler.attributes_distributions):
current_dist = self.attributes_distributions[attr]
other_dist = other_profiler.attributes_distributions[attr]
# Statistical comparison (simplified)
comparison['attribute_comparisons'][attr] = {
'current_unique_values': len(current_dist),
'comparison_unique_values': len(other_dist),
'current_top_3': current_dist.head(3).to_dict(),
'comparison_top_3': other_dist.head(3).to_dict()
}
return comparison |