from typing import List, Dict, Any, Optional import numpy as np from tinytroupe.agent import TinyPerson from tinytroupe.agent.social_types import Content, Reaction from tinytroupe.social_network import NetworkTopology from tinytroupe.features import ContentFeatureExtractor, PersonaFeatureExtractor, InteractionFeatureExtractor from tinytroupe.agent.agent_traits import TraitBasedBehaviorModel class EngagementPredictor: """Predicts whether persona will engage with content""" def __init__(self): self.content_extractor = ContentFeatureExtractor() self.persona_extractor = PersonaFeatureExtractor() self.interaction_extractor = InteractionFeatureExtractor() self.trait_model = TraitBasedBehaviorModel() def predict(self, persona: TinyPerson, content: Content, network: NetworkTopology) -> float: """Predict engagement probability""" content_features = self.content_extractor.extract(content) persona_features = self.persona_extractor.extract(persona) interaction_features = self.interaction_extractor.extract(persona, content, network) # Get base probability from trait-based model trait_prob = self.trait_model.compute_action_probability(persona, "engage", content) # Combine with other signals prob = (trait_prob * 0.5 + interaction_features["topic_alignment"] * 0.3 + persona_features["engagement_rate"] * 0.1 + content_features["sentiment_score"] * 0.1) return max(0.0, min(1.0, prob)) class ViralityPredictor: def predict_cascade_size(self, content: Content, seed_personas: List[str], network: NetworkTopology) -> int: return len(seed_personas) * 2 # Placeholder