Spaces:
Paused
Paused
| import torch | |
| from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
| from xora.models.transformers.transformer3d import Transformer3DModel | |
| from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
| from xora.schedulers.rf import RectifiedFlowScheduler | |
| from xora.pipelines.pipeline_xora_video import XoraVideoPipeline | |
| from pathlib import Path | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| import safetensors.torch | |
| import json | |
| import argparse | |
| from xora.utils.conditioning_method import ConditioningMethod | |
| import os | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| import random | |
| def load_vae(vae_dir): | |
| vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors" | |
| vae_config_path = vae_dir / "config.json" | |
| with open(vae_config_path, "r") as f: | |
| vae_config = json.load(f) | |
| vae = CausalVideoAutoencoder.from_config(vae_config) | |
| vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) | |
| vae.load_state_dict(vae_state_dict) | |
| return vae.cuda().to(torch.bfloat16) | |
| def load_unet(unet_dir): | |
| unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors" | |
| unet_config_path = unet_dir / "config.json" | |
| transformer_config = Transformer3DModel.load_config(unet_config_path) | |
| transformer = Transformer3DModel.from_config(transformer_config) | |
| unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) | |
| transformer.load_state_dict(unet_state_dict, strict=True) | |
| return transformer.cuda() | |
| def load_scheduler(scheduler_dir): | |
| scheduler_config_path = scheduler_dir / "scheduler_config.json" | |
| scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
| return RectifiedFlowScheduler.from_config(scheduler_config) | |
| def center_crop_and_resize(frame, target_height, target_width): | |
| h, w, _ = frame.shape | |
| aspect_ratio_target = target_width / target_height | |
| aspect_ratio_frame = w / h | |
| if aspect_ratio_frame > aspect_ratio_target: | |
| new_width = int(h * aspect_ratio_target) | |
| x_start = (w - new_width) // 2 | |
| frame_cropped = frame[:, x_start : x_start + new_width] | |
| else: | |
| new_height = int(w / aspect_ratio_target) | |
| y_start = (h - new_height) // 2 | |
| frame_cropped = frame[y_start : y_start + new_height, :] | |
| frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) | |
| return frame_resized | |
| def load_video_to_tensor_with_resize(video_path, target_height=512, target_width=768): | |
| cap = cv2.VideoCapture(video_path) | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| frame_resized = center_crop_and_resize(frame_rgb, target_height, target_width) | |
| frames.append(frame_resized) | |
| cap.release() | |
| video_np = (np.array(frames) / 127.5) - 1.0 | |
| video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float() | |
| return video_tensor | |
| def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): | |
| image = Image.open(image_path).convert("RGB") | |
| image_np = np.array(image) | |
| frame_resized = center_crop_and_resize(image_np, target_height, target_width) | |
| frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() | |
| frame_tensor = (frame_tensor / 127.5) - 1.0 | |
| # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) | |
| return frame_tensor.unsqueeze(0).unsqueeze(2) | |
| def main(): | |
| parser = argparse.ArgumentParser( | |
| description="Load models from separate directories and run the pipeline." | |
| ) | |
| # Directories | |
| parser.add_argument( | |
| "--ckpt_dir", | |
| type=str, | |
| required=True, | |
| help="Path to the directory containing unet, vae, and scheduler subdirectories", | |
| ) | |
| parser.add_argument( | |
| "--video_path", type=str, help="Path to the input video file (first frame used)" | |
| ) | |
| parser.add_argument("--image_path", type=str, help="Path to the input image file") | |
| parser.add_argument("--seed", type=int, default="171198") | |
| # Pipeline parameters | |
| parser.add_argument( | |
| "--num_inference_steps", type=int, default=40, help="Number of inference steps" | |
| ) | |
| parser.add_argument( | |
| "--num_images_per_prompt", | |
| type=int, | |
| default=1, | |
| help="Number of images per prompt", | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| default=3, | |
| help="Guidance scale for the pipeline", | |
| ) | |
| parser.add_argument( | |
| "--height", type=int, default=512, help="Height of the output video frames" | |
| ) | |
| parser.add_argument( | |
| "--width", type=int, default=768, help="Width of the output video frames" | |
| ) | |
| parser.add_argument( | |
| "--num_frames", | |
| type=int, | |
| default=121, | |
| help="Number of frames to generate in the output video", | |
| ) | |
| parser.add_argument( | |
| "--frame_rate", type=int, default=25, help="Frame rate for the output video" | |
| ) | |
| # Prompts | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| default='A man wearing a black leather jacket and blue jeans is riding a Harley Davidson motorcycle down a paved road. The man has short brown hair and is wearing a black helmet. The motorcycle is a dark red color with a large front fairing. The road is surrounded by green grass and trees. There is a gas station on the left side of the road with a red and white sign that says "Oil" and "Diner".', | |
| help="Text prompt to guide generation", | |
| ) | |
| parser.add_argument( | |
| "--negative_prompt", | |
| type=str, | |
| default="worst quality, inconsistent motion, blurry, jittery, distorted", | |
| help="Negative prompt for undesired features", | |
| ) | |
| args = parser.parse_args() | |
| # Paths for the separate mode directories | |
| ckpt_dir = Path(args.ckpt_dir) | |
| unet_dir = ckpt_dir / "unet" | |
| vae_dir = ckpt_dir / "vae" | |
| scheduler_dir = ckpt_dir / "scheduler" | |
| # Load models | |
| vae = load_vae(vae_dir) | |
| unet = load_unet(unet_dir) | |
| scheduler = load_scheduler(scheduler_dir) | |
| patchifier = SymmetricPatchifier(patch_size=1) | |
| text_encoder = T5EncoderModel.from_pretrained( | |
| "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" | |
| ).to("cuda") | |
| tokenizer = T5Tokenizer.from_pretrained( | |
| "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer" | |
| ) | |
| # Use submodels for the pipeline | |
| submodel_dict = { | |
| "transformer": unet, | |
| "patchifier": patchifier, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| } | |
| pipeline = XoraVideoPipeline(**submodel_dict).to("cuda") | |
| # Load media (video or image) | |
| if args.video_path: | |
| media_items = load_video_to_tensor_with_resize( | |
| args.video_path, args.height, args.width | |
| ).unsqueeze(0) | |
| elif args.image_path: | |
| media_items = load_image_to_tensor_with_resize( | |
| args.image_path, args.height, args.width | |
| ) | |
| else: | |
| raise ValueError("Either --video_path or --image_path must be provided.") | |
| # Prepare input for the pipeline | |
| sample = { | |
| "prompt": args.prompt, | |
| "prompt_attention_mask": None, | |
| "negative_prompt": args.negative_prompt, | |
| "negative_prompt_attention_mask": None, | |
| "media_items": media_items, | |
| } | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| torch.cuda.manual_seed(args.seed) | |
| generator = torch.Generator(device="cuda").manual_seed(args.seed) | |
| images = pipeline( | |
| num_inference_steps=args.num_inference_steps, | |
| num_images_per_prompt=args.num_images_per_prompt, | |
| guidance_scale=args.guidance_scale, | |
| generator=generator, | |
| output_type="pt", | |
| callback_on_step_end=None, | |
| height=args.height, | |
| width=args.width, | |
| num_frames=args.num_frames, | |
| frame_rate=args.frame_rate, | |
| **sample, | |
| is_video=True, | |
| vae_per_channel_normalize=True, | |
| conditioning_method=ConditioningMethod.FIRST_FRAME, | |
| ).images | |
| # Save output video | |
| def get_unique_filename(base, ext, dir=".", index_range=1000): | |
| for i in range(index_range): | |
| filename = os.path.join(dir, f"{base}_{i}{ext}") | |
| if not os.path.exists(filename): | |
| return filename | |
| raise FileExistsError( | |
| f"Could not find a unique filename after {index_range} attempts." | |
| ) | |
| for i in range(images.shape[0]): | |
| video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
| video_np = (video_np * 255).astype(np.uint8) | |
| fps = args.frame_rate | |
| height, width = video_np.shape[1:3] | |
| output_filename = get_unique_filename(f"video_output_{i}", ".mp4", ".") | |
| out = cv2.VideoWriter( | |
| output_filename, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height) | |
| ) | |
| for frame in video_np[..., ::-1]: | |
| out.write(frame) | |
| out.release() | |
| if __name__ == "__main__": | |
| main() | |