Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
from flask import Flask, request, jsonify
|
| 5 |
+
from flask_cors import CORS
|
| 6 |
+
from transformers import (
|
| 7 |
+
WhisperProcessor,
|
| 8 |
+
WhisperForConditionalGeneration,
|
| 9 |
+
AutoTokenizer,
|
| 10 |
+
AutoModelForSeq2SeqLM,
|
| 11 |
+
pipeline
|
| 12 |
+
)
|
| 13 |
+
from huggingface_hub import snapshot_download
|
| 14 |
+
from torch.quantization import quantize_dynamic
|
| 15 |
+
import logging
|
| 16 |
+
import ffmpeg
|
| 17 |
+
import tempfile
|
| 18 |
+
|
| 19 |
+
# Silence all transformers and huggingface logging
|
| 20 |
+
logging.getLogger("transformers").setLevel(logging.ERROR)
|
| 21 |
+
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
| 22 |
+
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
| 23 |
+
|
| 24 |
+
app = Flask(__name__)
|
| 25 |
+
CORS(app)
|
| 26 |
+
|
| 27 |
+
# ========== Load Whisper Model (quantized + small) ==========
|
| 28 |
+
def load_whisper_model(model_size="small", save_dir="/tmp/saved_models/whisper"):
|
| 29 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 30 |
+
model_name = f"openai/whisper-{model_size}"
|
| 31 |
+
processor = WhisperProcessor.from_pretrained(model_name, cache_dir=save_dir)
|
| 32 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name, cache_dir=save_dir)
|
| 33 |
+
model = quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
| 34 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
+
return processor, model
|
| 36 |
+
|
| 37 |
+
# ========== Load Grammar Correction Model (quantized) ==========
|
| 38 |
+
def load_grammar_model(save_dir="/tmp/saved_models/grammar_corrector"):
|
| 39 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 40 |
+
model_name = "prithivida/grammar_error_correcter_v1"
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=save_dir)
|
| 42 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir=save_dir)
|
| 43 |
+
model = quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
| 44 |
+
grammar_pipeline = pipeline(
|
| 45 |
+
"text2text-generation",
|
| 46 |
+
model=model,
|
| 47 |
+
tokenizer=tokenizer,
|
| 48 |
+
device=0 if torch.cuda.is_available() else -1
|
| 49 |
+
)
|
| 50 |
+
return grammar_pipeline
|
| 51 |
+
|
| 52 |
+
# ========== Optimized Audio Loader ==========
|
| 53 |
+
def load_audio(audio_path):
|
| 54 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_wav:
|
| 55 |
+
tmp_wav_path = tmp_wav.name
|
| 56 |
+
try:
|
| 57 |
+
(
|
| 58 |
+
ffmpeg
|
| 59 |
+
.input(audio_path)
|
| 60 |
+
.output(tmp_wav_path, format='wav', ac=1, ar='16k')
|
| 61 |
+
.overwrite_output()
|
| 62 |
+
.run(quiet=True)
|
| 63 |
+
)
|
| 64 |
+
waveform, sample_rate = torchaudio.load(tmp_wav_path)
|
| 65 |
+
if sample_rate != 16000:
|
| 66 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
| 67 |
+
waveform = resampler(waveform)
|
| 68 |
+
return waveform.squeeze().numpy(), 16000
|
| 69 |
+
finally:
|
| 70 |
+
if os.path.exists(tmp_wav_path):
|
| 71 |
+
os.remove(tmp_wav_path)
|
| 72 |
+
|
| 73 |
+
# ========== Audio Transcription ==========
|
| 74 |
+
def transcribe_audio(audio_file, processor, model):
|
| 75 |
+
audio, _ = load_audio(audio_file)
|
| 76 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
| 77 |
+
input_features = input_features.to(model.device)
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
generated_ids = model.generate(input_features)
|
| 80 |
+
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 81 |
+
|
| 82 |
+
def transcribe_long_audio(audio_file, processor, model, chunk_length_s=30):
|
| 83 |
+
audio, sample_rate = load_audio(audio_file)
|
| 84 |
+
audio_length_s = len(audio) / sample_rate
|
| 85 |
+
if audio_length_s <= chunk_length_s:
|
| 86 |
+
return transcribe_audio(audio_file, processor, model)
|
| 87 |
+
|
| 88 |
+
chunk_size = int(chunk_length_s * sample_rate)
|
| 89 |
+
transcription_chunks = []
|
| 90 |
+
|
| 91 |
+
for i in range(0, len(audio), chunk_size):
|
| 92 |
+
chunk = audio[i:i + chunk_size]
|
| 93 |
+
if len(chunk) < 0.5 * chunk_size:
|
| 94 |
+
continue
|
| 95 |
+
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt")
|
| 96 |
+
input_features = inputs.input_features.to(model.device)
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
generated_ids = model.generate(input_features)
|
| 99 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 100 |
+
transcription_chunks.append(text)
|
| 101 |
+
|
| 102 |
+
return " ".join(transcription_chunks)
|
| 103 |
+
|
| 104 |
+
# ========== Grammar Correction ==========
|
| 105 |
+
def correct_grammar(text, grammar_pipeline):
|
| 106 |
+
sentences = [s.strip() for s in text.split('.') if s.strip()]
|
| 107 |
+
results = grammar_pipeline(sentences, batch_size=4)
|
| 108 |
+
return '. '.join([r['generated_text'] for r in results])
|
| 109 |
+
|
| 110 |
+
# ========== Initialize Models ==========
|
| 111 |
+
processor, whisper_model = load_whisper_model("small")
|
| 112 |
+
grammar_pipeline = load_grammar_model()
|
| 113 |
+
|
| 114 |
+
# ========== Warm-Up Models ==========
|
| 115 |
+
def warm_up_models():
|
| 116 |
+
dummy_audio = torch.zeros(1, 80, 3000).to(whisper_model.device)
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
whisper_model.generate(dummy_audio)
|
| 119 |
+
_ = correct_grammar("This is a warm up test.", grammar_pipeline)
|
| 120 |
+
|
| 121 |
+
warm_up_models()
|
| 122 |
+
|
| 123 |
+
# ========== Flask Route ==========
|
| 124 |
+
@app.route('/transcribe', methods=['POST'])
|
| 125 |
+
def transcribe():
|
| 126 |
+
if 'audio' not in request.files:
|
| 127 |
+
return jsonify({"error": "No audio file provided."}), 400
|
| 128 |
+
|
| 129 |
+
audio_file = request.files['audio']
|
| 130 |
+
os.makedirs("/tmp/temp_audio", exist_ok=True)
|
| 131 |
+
audio_path = f"/tmp/temp_audio/{audio_file.filename}"
|
| 132 |
+
audio_file.save(audio_path)
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
transcription = transcribe_long_audio(audio_path, processor, whisper_model)
|
| 136 |
+
corrected_text = correct_grammar(transcription, grammar_pipeline)
|
| 137 |
+
|
| 138 |
+
return jsonify({
|
| 139 |
+
"raw_transcription": transcription,
|
| 140 |
+
"corrected_transcription": corrected_text
|
| 141 |
+
})
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
return jsonify({"error": str(e)}), 500
|
| 145 |
+
|
| 146 |
+
finally:
|
| 147 |
+
if os.path.exists(audio_path):
|
| 148 |
+
os.remove(audio_path)
|
| 149 |
+
|
| 150 |
+
# ========== Run App ==========
|
| 151 |
+
if __name__ == '__main__':
|
| 152 |
+
import logging
|
| 153 |
+
log = logging.getLogger('werkzeug')
|
| 154 |
+
log.setLevel(logging.WARNING)
|
| 155 |
+
app.run(host="0.0.0.0", debug=False, port=7860)
|