Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
import pandas as pd
|
|
@@ -26,45 +28,39 @@ API_URL = (
|
|
| 26 |
|
| 27 |
# --- LOAD MODELS ---
|
| 28 |
def load_models():
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
| 53 |
-
except Exception as e:
|
| 54 |
-
raise gr.Error(f"Model loading failed: {str(e)}")
|
| 55 |
|
| 56 |
-
|
| 57 |
-
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print(f"Initial model loading failed: {str(e)}")
|
| 60 |
|
| 61 |
# --- RULES & TEMPLATES ---
|
| 62 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
| 63 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
| 64 |
task_rules = {
|
| 65 |
-
'mild': {'decrease':
|
| 66 |
-
'moderate':
|
| 67 |
-
'severe': {'decrease':
|
| 68 |
}
|
| 69 |
templates = {
|
| 70 |
'mild': (
|
|
@@ -90,138 +86,83 @@ templates = {
|
|
| 90 |
)
|
| 91 |
}
|
| 92 |
|
| 93 |
-
# --- FUNCTIONS ---
|
| 94 |
def detect_fire(img):
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
pred = vgg_model.predict(arr)[0][0]
|
| 100 |
-
is_fire = pred >= 0.5
|
| 101 |
-
return is_fire, pred
|
| 102 |
-
|
| 103 |
-
def classify_severity(img):
|
| 104 |
-
img_resized = img.resize((224, 224))
|
| 105 |
-
arr = keras_image.img_to_array(img_resized)
|
| 106 |
-
arr = np.expand_dims(arr, axis=0)
|
| 107 |
-
arr = xce_preprocess(arr)
|
| 108 |
-
feat = np.squeeze(arr)
|
| 109 |
-
feat_flat = feat.flatten().reshape(1, -1)
|
| 110 |
-
|
| 111 |
-
rf_pred = rf_model.predict_proba(feat_flat)
|
| 112 |
-
xgb_pred = xgb_model.predict_proba(feat_flat)
|
| 113 |
-
avg_pred = (rf_pred + xgb_pred) / 2
|
| 114 |
-
final_class = np.argmax(avg_pred)
|
| 115 |
-
return target_map[final_class]
|
| 116 |
|
| 117 |
-
def fetch_weather_trend(lat, lon):
|
| 118 |
-
today = datetime.utcnow().date()
|
| 119 |
-
start_date = today - timedelta(days=2)
|
| 120 |
-
end_date = today - timedelta(days=1)
|
| 121 |
-
|
| 122 |
-
url = API_URL.format(lat=lat, lon=lon, start=start_date, end=end_date)
|
| 123 |
-
response = requests.get(url)
|
| 124 |
-
if response.status_code != 200:
|
| 125 |
-
return 'same' # fallback if API fails
|
| 126 |
-
|
| 127 |
-
data = response.json()
|
| 128 |
-
temp_max = data['daily']['temperature_2m_max']
|
| 129 |
-
wind_max = data['daily']['windspeed_10m_max']
|
| 130 |
-
humidity_min = data['daily']['relative_humidity_2m_min']
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
overall_trend = temp_trend + wind_trend + humidity_trend
|
| 138 |
-
if overall_trend > 0:
|
| 139 |
-
return 'increase'
|
| 140 |
-
elif overall_trend < 0:
|
| 141 |
-
return 'decrease'
|
| 142 |
-
else:
|
| 143 |
-
return 'same'
|
| 144 |
|
| 145 |
-
def
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
)
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
def pipeline(image):
|
| 158 |
img = Image.fromarray(image).convert('RGB')
|
| 159 |
fire, prob = detect_fire(img)
|
| 160 |
if not fire:
|
| 161 |
-
return (
|
| 162 |
-
f"**No wildfire detected** (probability={prob:.2f})",
|
| 163 |
-
"N/A",
|
| 164 |
-
"N/A",
|
| 165 |
-
"There is currently no sign of wildfire in the image. Continue normal monitoring."
|
| 166 |
-
)
|
| 167 |
sev = classify_severity(img)
|
| 168 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
| 169 |
recs = generate_recommendations(sev, trend)
|
| 170 |
-
return (
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
.
|
| 183 |
-
|
| 184 |
-
border-radius: 12px !important;
|
| 185 |
-
padding: 20px !important;
|
| 186 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 187 |
-
}
|
| 188 |
-
.status-box {
|
| 189 |
-
background: #fff3e6 !important;
|
| 190 |
-
border: 1px solid #ffd8b3 !important;
|
| 191 |
-
}
|
| 192 |
-
.dark-red { color: #cc0000 !important; }
|
| 193 |
-
.green { color: #008000 !important; }
|
| 194 |
-
"""
|
| 195 |
-
|
| 196 |
-
with gr.Blocks(css=custom_css) as demo:
|
| 197 |
-
gr.Markdown("# 🔥 Wildfire Detection & Management Assistant")
|
| 198 |
-
|
| 199 |
-
with gr.Row(variant="panel"):
|
| 200 |
-
with gr.Column(scale=2):
|
| 201 |
-
inp = gr.Image(type="numpy", label="Satellite Image", elem_id="upload-wildfire-image")
|
| 202 |
-
with gr.Column(scale=1):
|
| 203 |
-
status = gr.Textbox(label="Fire Status", interactive=False, elem_classes="status-box")
|
| 204 |
-
severity = gr.Textbox(label="Severity Level", interactive=False)
|
| 205 |
-
trend = gr.Textbox(label="Weather Trend", interactive=False)
|
| 206 |
-
|
| 207 |
-
with gr.Accordion("📋 Detailed Recommendations", open=False):
|
| 208 |
-
rec_box = gr.Markdown()
|
| 209 |
-
|
| 210 |
-
btn = gr.Button("Analyze", variant="primary")
|
| 211 |
-
btn.click(
|
| 212 |
-
fn=pipeline,
|
| 213 |
-
inputs=inp,
|
| 214 |
-
outputs=[status, severity, trend, rec_box],
|
| 215 |
-
api_name="analyze"
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
gr.Markdown("---")
|
| 219 |
-
gr.HTML("<div style='text-align: center; color: #666;'>© 2025 ForestAI Labs</div>")
|
| 220 |
-
|
| 221 |
-
def handle_errors(inputs, outputs):
|
| 222 |
-
for output in outputs:
|
| 223 |
-
if isinstance(output, Exception):
|
| 224 |
-
raise gr.Error("Analysis failed. Please check the input and try again.")
|
| 225 |
|
| 226 |
-
if __name__ ==
|
| 227 |
-
|
|
|
|
| 1 |
+
improve the text in the rcommendation, display each point on next line and improve the UI a little bit
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
import requests
|
| 5 |
import pandas as pd
|
|
|
|
| 28 |
|
| 29 |
# --- LOAD MODELS ---
|
| 30 |
def load_models():
|
| 31 |
+
# Fire detector (VGG16)
|
| 32 |
+
vgg_model = load_model(
|
| 33 |
+
'vgg16_focal_unfreeze_more.keras',
|
| 34 |
+
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
|
| 35 |
+
)
|
| 36 |
+
# Severity classifier (Xception)
|
| 37 |
+
def focal_loss_fixed(gamma=2., alpha=.25):
|
| 38 |
+
import tensorflow.keras.backend as K
|
| 39 |
+
def loss_fn(y_true, y_pred):
|
| 40 |
+
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
|
| 41 |
+
ce = -y_true * K.log(y_pred)
|
| 42 |
+
w = alpha * K.pow(1-y_pred, gamma)
|
| 43 |
+
return K.mean(w * ce, axis=-1)
|
| 44 |
+
return loss_fn
|
| 45 |
+
xce_model = load_model(
|
| 46 |
+
'severity_post_tta.keras',
|
| 47 |
+
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
|
| 48 |
+
)
|
| 49 |
+
# Ensemble and trend models
|
| 50 |
+
rf_model = joblib.load('ensemble_rf_model.pkl')
|
| 51 |
+
xgb_model = joblib.load('ensemble_xgb_model.pkl')
|
| 52 |
+
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
|
| 53 |
+
return vgg_model, xce_model, rf_model, xgb_model, lr_model
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# --- RULES & TEMPLATES ---
|
| 58 |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
|
| 59 |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
|
| 60 |
task_rules = {
|
| 61 |
+
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
|
| 62 |
+
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
|
| 63 |
+
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
|
| 64 |
}
|
| 65 |
templates = {
|
| 66 |
'mild': (
|
|
|
|
| 86 |
)
|
| 87 |
}
|
| 88 |
|
| 89 |
+
# --- PIPELINE FUNCTIONS ---
|
| 90 |
def detect_fire(img):
|
| 91 |
+
x = keras_image.img_to_array(img.resize((128,128)))[None]
|
| 92 |
+
x = vgg_preprocess(x)
|
| 93 |
+
prob = float(vgg_model.predict(x)[0][0])
|
| 94 |
+
return prob >= 0.5, prob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
def classify_severity(img):
|
| 98 |
+
x = keras_image.img_to_array(img.resize((224,224)))[None]
|
| 99 |
+
x = xce_preprocess(x)
|
| 100 |
+
preds = xception_model.predict(x)
|
| 101 |
+
rf_p = rf_model.predict(preds)[0]
|
| 102 |
+
xgb_p = xgb_model.predict(preds)[0]
|
| 103 |
+
ensemble = int(round((rf_p + xgb_p)/2))
|
| 104 |
+
return target_map.get(ensemble, 'moderate')
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
def fetch_weather_trend(lat, lon):
|
| 108 |
+
end = datetime.utcnow()
|
| 109 |
+
start = end - timedelta(days=1)
|
| 110 |
+
url = API_URL.format(lat=lat, lon=lon,
|
| 111 |
+
start=start.strftime('%Y-%m-%d'),
|
| 112 |
+
end=end.strftime('%Y-%m-%d'))
|
| 113 |
+
df = pd.DataFrame(requests.get(url).json().get('daily', {}))
|
| 114 |
+
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
|
| 115 |
+
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
|
| 116 |
+
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
|
| 117 |
+
df['precipitation'] = df['precipitation_sum'].fillna(0)
|
| 118 |
+
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
|
| 119 |
+
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
|
| 120 |
+
df['wind_speed'] = df['windspeed_10m_max']
|
| 121 |
+
df['fire_risk_score'] = (
|
| 122 |
+
0.4*(df['temperature']/55) +
|
| 123 |
+
0.2*(1-df['humidity']/100) +
|
| 124 |
+
0.3*(df['wind_speed']/60) +
|
| 125 |
+
0.1*(1-df['precipitation']/50)
|
| 126 |
)
|
| 127 |
+
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
|
| 128 |
+
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
|
| 129 |
+
trend_cl = lr_model.predict(feat)[0]
|
| 130 |
+
return trend_map.get(trend_cl, 'same')
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def generate_recommendations(original_severity, weather_trend):
|
| 134 |
+
# determine projected severity
|
| 135 |
+
proj = task_rules[original_severity][weather_trend]
|
| 136 |
+
rec = templates[proj]
|
| 137 |
+
# proper multi-line header
|
| 138 |
+
header = f"""**Original:** {original_severity.title()}
|
| 139 |
+
**Trend:** {weather_trend.title()}
|
| 140 |
+
**Projected:** {proj.title()}\n\n"""
|
| 141 |
+
return header + rec
|
| 142 |
+
|
| 143 |
+
# --- GRADIO INTERFACE ---
|
| 144 |
def pipeline(image):
|
| 145 |
img = Image.fromarray(image).convert('RGB')
|
| 146 |
fire, prob = detect_fire(img)
|
| 147 |
if not fire:
|
| 148 |
+
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
sev = classify_severity(img)
|
| 150 |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
|
| 151 |
recs = generate_recommendations(sev, trend)
|
| 152 |
+
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
|
| 153 |
+
|
| 154 |
+
interface = gr.Interface(
|
| 155 |
+
fn=pipeline,
|
| 156 |
+
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
|
| 157 |
+
outputs=[
|
| 158 |
+
gr.Textbox(label='Fire Status'),
|
| 159 |
+
gr.Textbox(label='Severity Level'),
|
| 160 |
+
gr.Textbox(label='Weather Trend'),
|
| 161 |
+
gr.Markdown(label='Recommendations')
|
| 162 |
+
],
|
| 163 |
+
title='Wildfire Detection & Management Assistant',
|
| 164 |
+
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
|
| 165 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
if __name__ == '__main__':
|
| 168 |
+
interface.launch()
|