--- title: Ministral WebGPU emoji: ⚡️ colorFrom: red colorTo: yellow sdk: static pinned: false license: apache-2.0 short_description: Frontier multimodal AI, running entirely in your browser. app_build_command: npm run build app_file: dist/index.html models: - mistralai/Ministral-3-3B-Instruct-2512-ONNX - mistralai/Ministral-3-3B-Instruct-2512 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference # AI Multimodal WebGPU Assistant **Developer:** Muhammad Abdullah Rasheed **Research Assistant @ Cambridge | MSc Data Science & AI '25 | Google WTM Scholar** ## Overview This project demonstrates cutting-edge browser-based AI by running a complete 3B parameter multimodal language model entirely client-side using WebGPU acceleration. No servers, no API calls, no data sent anywhere - complete privacy and instant inference. ## Key Features - **Privacy-First Architecture**: The entire Ministral-3B model runs locally in your browser using WebGPU - your video feed never leaves your device - **Real-Time Multimodal AI**: Live camera feed processing with visual question answering capabilities - **WebGPU Acceleration**: Leveraging the latest browser GPU APIs for near-native performance - **Zero Backend Dependencies**: No API keys, no server calls, no external services required - **Cross-Platform**: Works seamlessly across modern browsers with WebGPU support ## Technical Stack - **Model**: Ministral-3-3B-Instruct (quantized for browser deployment) - **Runtime**: Transformers.js for in-browser inference - **Compute**: WebGPU API for GPU acceleration - **Frontend**: Modern JavaScript with WebAssembly integration ## Use Cases - Visual question answering from live camera feed - Real-time scene understanding and description - Privacy-sensitive AI applications - Edge computing demonstrations - Educational tool for AI and browser technologies ## Why This Matters This project showcases the future of AI deployment - moving powerful language models from cloud servers to the edge, where they can provide instant, private, and accessible intelligence without compromising user privacy or requiring expensive infrastructure. ## Author **Muhammad Abdullah Rasheed** Research Assistant | AI & Machine Learning Researcher - 🎓 MSc Data Science & AI '25, Google WTM Scholar - 🔬 Research areas: Computer Vision, NLP, Climate AI - 💼 Experience: Gesture Recognition, Backend Development, ML Engineering - 🔗 [LinkedIn](https://www.linkedin.com/in/muhammad-abdullahrasheed-/) | [GitHub](https://github.com/Abdullahrasheed45) | [HuggingFace](https://huggingface.co/Abdullahrasheed45) ## License Apache-2.0