Spaces:
Runtime error
Runtime error
abhi001vj
commited on
Commit
Β·
1d3f9ab
1
Parent(s):
a5f94e4
Fixed the pinecone retrieval issue
Browse files- .gitattributes +1 -0
- app.py +99 -74
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
.streamlit/
|
app.py
CHANGED
|
@@ -6,12 +6,13 @@ import sys
|
|
| 6 |
import uuid
|
| 7 |
from json import JSONDecodeError
|
| 8 |
from pathlib import Path
|
|
|
|
| 9 |
|
| 10 |
import pandas as pd
|
| 11 |
import pinecone
|
| 12 |
import streamlit as st
|
| 13 |
from annotated_text import annotation
|
| 14 |
-
from haystack import Document
|
| 15 |
from haystack.document_stores import PineconeDocumentStore
|
| 16 |
from haystack.nodes import (
|
| 17 |
DocxToTextConverter,
|
|
@@ -26,22 +27,48 @@ from haystack.pipelines import ExtractiveQAPipeline, Pipeline
|
|
| 26 |
from markdown import markdown
|
| 27 |
from sentence_transformers import SentenceTransformer
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# connect to pinecone environment
|
| 30 |
-
pinecone.init(
|
| 31 |
-
api_key=st.secrets["pinecone_apikey"],
|
| 32 |
-
environment="us-west1-gcp"
|
| 33 |
-
)
|
| 34 |
index_name = "qa-demo-fast-384"
|
| 35 |
# retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
| 36 |
retriever_model = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1"
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
preprocessor = PreProcessor(
|
| 39 |
clean_empty_lines=True,
|
| 40 |
clean_whitespace=True,
|
| 41 |
clean_header_footer=False,
|
| 42 |
split_by="word",
|
| 43 |
split_length=100,
|
| 44 |
-
split_respect_sentence_boundary=True
|
| 45 |
)
|
| 46 |
file_type_classifier = FileTypeClassifier()
|
| 47 |
text_converter = TextConverter()
|
|
@@ -53,65 +80,50 @@ if index_name not in pinecone.list_indexes():
|
|
| 53 |
# delete the current index and create the new index if it does not exist
|
| 54 |
for delete_index in pinecone.list_indexes():
|
| 55 |
pinecone.delete_index(delete_index)
|
| 56 |
-
pinecone.create_index(
|
| 57 |
-
index_name,
|
| 58 |
-
dimension=embedding_dim,
|
| 59 |
-
metric="cosine"
|
| 60 |
-
)
|
| 61 |
|
| 62 |
# connect to abstractive-question-answering index we created
|
| 63 |
index = pinecone.Index(index_name)
|
| 64 |
|
| 65 |
-
FILE_UPLOAD_PATH= "./data/uploads/"
|
| 66 |
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
|
| 67 |
-
|
|
|
|
| 68 |
def create_doc_store():
|
| 69 |
document_store = PineconeDocumentStore(
|
| 70 |
-
api_key=
|
| 71 |
index=index_name,
|
| 72 |
similarity="cosine",
|
| 73 |
-
embedding_dim=embedding_dim
|
| 74 |
)
|
| 75 |
return document_store
|
| 76 |
|
| 77 |
-
# @st.cache
|
| 78 |
-
# def create_pipe(document_store):
|
| 79 |
-
# retriever = EmbeddingRetriever(
|
| 80 |
-
# document_store=document_store,
|
| 81 |
-
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
| 82 |
-
# model_format="sentence_transformers",
|
| 83 |
-
# )
|
| 84 |
-
# reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
| 85 |
-
# pipe = ExtractiveQAPipeline(reader, retriever)
|
| 86 |
-
# return pipe
|
| 87 |
|
| 88 |
def query(pipe, question, top_k_reader, top_k_retriever):
|
| 89 |
res = pipe.run(
|
| 90 |
-
query=question,
|
|
|
|
| 91 |
)
|
| 92 |
-
answer_df = []
|
| 93 |
-
# for r in res['answers']:
|
| 94 |
-
# ans_dict = res['answers'][0].meta
|
| 95 |
-
# ans_dict["answer"] = r.context
|
| 96 |
-
# answer_df.append(ans_dict)
|
| 97 |
-
# result = pd.DataFrame(answer_df)
|
| 98 |
-
# result.columns = ["Source","Title","Year","Link","Answer"]
|
| 99 |
-
# result[["Answer","Link","Source","Title","Year"]]
|
| 100 |
return res
|
| 101 |
|
|
|
|
| 102 |
document_store = create_doc_store()
|
| 103 |
# pipe = create_pipe(document_store)
|
| 104 |
|
| 105 |
retriever = EmbeddingRetriever(
|
| 106 |
-
document_store=document_store,
|
| 107 |
-
embedding_model=retriever_model,
|
| 108 |
-
model_format="sentence_transformers",
|
| 109 |
)
|
| 110 |
# load the retriever model from huggingface model hub
|
| 111 |
sentence_encoder = SentenceTransformer(retriever_model)
|
| 112 |
|
| 113 |
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
| 114 |
-
pipe = ExtractiveQAPipeline(reader, retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
indexing_pipeline_with_classification = Pipeline()
|
|
@@ -133,20 +145,29 @@ indexing_pipeline_with_classification.add_node(
|
|
| 133 |
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
|
| 134 |
)
|
| 135 |
|
|
|
|
| 136 |
def set_state_if_absent(key, value):
|
| 137 |
if key not in st.session_state:
|
| 138 |
st.session_state[key] = value
|
| 139 |
|
|
|
|
| 140 |
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
| 141 |
-
DEFAULT_QUESTION_AT_STARTUP = os.getenv(
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
# Sliders
|
| 145 |
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
| 146 |
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
|
| 147 |
|
| 148 |
|
| 149 |
-
st.set_page_config(
|
|
|
|
|
|
|
| 150 |
|
| 151 |
# Persistent state
|
| 152 |
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
|
|
@@ -160,6 +181,7 @@ def reset_results(*args):
|
|
| 160 |
st.session_state.results = None
|
| 161 |
st.session_state.raw_json = None
|
| 162 |
|
|
|
|
| 163 |
# Title
|
| 164 |
st.write("# Haystack Search Demo")
|
| 165 |
st.markdown(
|
|
@@ -187,12 +209,16 @@ for data_file in data_files:
|
|
| 187 |
f.write(data_file.getbuffer())
|
| 188 |
ALL_FILES.append(file_path)
|
| 189 |
st.sidebar.write(str(data_file.name) + " β
")
|
| 190 |
-
META_DATA.append({"filename":data_file.name})
|
| 191 |
-
|
|
|
|
|
|
|
| 192 |
|
| 193 |
if len(ALL_FILES) > 0:
|
| 194 |
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
|
| 195 |
-
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)[
|
|
|
|
|
|
|
| 196 |
index_name = "qa_demo"
|
| 197 |
# we will use batches of 64
|
| 198 |
batch_size = 128
|
|
@@ -204,7 +230,7 @@ if len(ALL_FILES) > 0:
|
|
| 204 |
upload_count = 0
|
| 205 |
for i in range(0, len(docs), batch_size):
|
| 206 |
# find end of batch
|
| 207 |
-
i_end = min(i+batch_size, len(docs))
|
| 208 |
# extract batch
|
| 209 |
batch = [doc.content for doc in docs[i:i_end]]
|
| 210 |
# generate embeddings for batch
|
|
@@ -222,10 +248,10 @@ if len(ALL_FILES) > 0:
|
|
| 222 |
to_upsert = list(zip(ids, emb, meta))
|
| 223 |
# upsert/insert these records to pinecone
|
| 224 |
_ = index.upsert(vectors=to_upsert)
|
| 225 |
-
upload_count+=batch_size
|
| 226 |
-
upload_percentage = min(int((upload_count/len(docs))*100), 100)
|
| 227 |
my_bar.progress(upload_percentage)
|
| 228 |
-
|
| 229 |
top_k_reader = st.sidebar.slider(
|
| 230 |
"Max. number of answers",
|
| 231 |
min_value=1,
|
|
@@ -251,12 +277,12 @@ top_k_retriever = st.sidebar.slider(
|
|
| 251 |
# raw_json = upload_doc(data_file)
|
| 252 |
|
| 253 |
question = st.text_input(
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
col1, col2 = st.columns(2)
|
| 261 |
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
| 262 |
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
|
@@ -265,23 +291,21 @@ col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html
|
|
| 265 |
run_pressed = col1.button("Run")
|
| 266 |
if run_pressed:
|
| 267 |
|
| 268 |
-
run_query =
|
| 269 |
-
run_pressed or question != st.session_state.question
|
| 270 |
-
)
|
| 271 |
# Get results for query
|
| 272 |
if run_query and question:
|
| 273 |
reset_results()
|
| 274 |
st.session_state.question = question
|
| 275 |
|
| 276 |
-
with st.spinner(
|
| 277 |
-
"π§ Performing neural search on documents... \n "
|
| 278 |
-
):
|
| 279 |
try:
|
| 280 |
-
st.session_state.results
|
| 281 |
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
|
| 282 |
)
|
| 283 |
except JSONDecodeError as je:
|
| 284 |
-
st.error(
|
|
|
|
|
|
|
| 285 |
except Exception as e:
|
| 286 |
logging.exception(e)
|
| 287 |
if "The server is busy processing requests" in str(e) or "503" in str(e):
|
|
@@ -294,23 +318,24 @@ if st.session_state.results:
|
|
| 294 |
|
| 295 |
st.write("## Results:")
|
| 296 |
|
| 297 |
-
for count, result in enumerate(st.session_state.results[
|
| 298 |
answer, context = result.answer, result.context
|
| 299 |
start_idx = context.find(answer)
|
| 300 |
end_idx = start_idx + len(answer)
|
| 301 |
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
|
| 302 |
try:
|
| 303 |
-
|
| 304 |
st.write(
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
| 308 |
except:
|
| 309 |
-
filename = result.meta.get(
|
| 310 |
st.write(
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
| 313 |
)
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
|
|
|
| 6 |
import uuid
|
| 7 |
from json import JSONDecodeError
|
| 8 |
from pathlib import Path
|
| 9 |
+
from typing import List, Optional
|
| 10 |
|
| 11 |
import pandas as pd
|
| 12 |
import pinecone
|
| 13 |
import streamlit as st
|
| 14 |
from annotated_text import annotation
|
| 15 |
+
from haystack import BaseComponent, Document
|
| 16 |
from haystack.document_stores import PineconeDocumentStore
|
| 17 |
from haystack.nodes import (
|
| 18 |
DocxToTextConverter,
|
|
|
|
| 27 |
from markdown import markdown
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
|
| 30 |
+
|
| 31 |
+
class PineconeSearch(BaseComponent):
|
| 32 |
+
outgoing_edges = 1
|
| 33 |
+
|
| 34 |
+
def run(self, query: str, top_k: Optional[int]):
|
| 35 |
+
# process the inputs
|
| 36 |
+
vector_embedding = emb_model.encode(query).tolist()
|
| 37 |
+
response = index.query([vector_embedding], top_k=top_k, include_metadata=True)
|
| 38 |
+
docs = [
|
| 39 |
+
Document(
|
| 40 |
+
content=d["metadata"]["text"],
|
| 41 |
+
meta={
|
| 42 |
+
"title": d["metadata"]["filename"],
|
| 43 |
+
"context": d["metadata"]["text"],
|
| 44 |
+
"_split_id": d["metadata"]["_split_id"],
|
| 45 |
+
},
|
| 46 |
+
)
|
| 47 |
+
for d in response["matches"]
|
| 48 |
+
]
|
| 49 |
+
output = {"documents": docs, "query": query}
|
| 50 |
+
return output, "output_1"
|
| 51 |
+
|
| 52 |
+
def run_batch(self, queries: List[str], top_k: Optional[int]):
|
| 53 |
+
|
| 54 |
+
return {}, "output_1"
|
| 55 |
+
|
| 56 |
+
|
| 57 |
# connect to pinecone environment
|
| 58 |
+
pinecone.init(api_key=st.secrets["pinecone_apikey"], environment="us-west1-gcp")
|
|
|
|
|
|
|
|
|
|
| 59 |
index_name = "qa-demo-fast-384"
|
| 60 |
# retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
| 61 |
retriever_model = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1"
|
| 62 |
+
emb_model = SentenceTransformer(retriever_model)
|
| 63 |
+
|
| 64 |
+
embedding_dim = 384
|
| 65 |
preprocessor = PreProcessor(
|
| 66 |
clean_empty_lines=True,
|
| 67 |
clean_whitespace=True,
|
| 68 |
clean_header_footer=False,
|
| 69 |
split_by="word",
|
| 70 |
split_length=100,
|
| 71 |
+
split_respect_sentence_boundary=True,
|
| 72 |
)
|
| 73 |
file_type_classifier = FileTypeClassifier()
|
| 74 |
text_converter = TextConverter()
|
|
|
|
| 80 |
# delete the current index and create the new index if it does not exist
|
| 81 |
for delete_index in pinecone.list_indexes():
|
| 82 |
pinecone.delete_index(delete_index)
|
| 83 |
+
pinecone.create_index(index_name, dimension=embedding_dim, metric="cosine")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
# connect to abstractive-question-answering index we created
|
| 86 |
index = pinecone.Index(index_name)
|
| 87 |
|
| 88 |
+
FILE_UPLOAD_PATH = "./data/uploads/"
|
| 89 |
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
def create_doc_store():
|
| 93 |
document_store = PineconeDocumentStore(
|
| 94 |
+
api_key=st.secrets["pinecone_apikey"],
|
| 95 |
index=index_name,
|
| 96 |
similarity="cosine",
|
| 97 |
+
embedding_dim=embedding_dim,
|
| 98 |
)
|
| 99 |
return document_store
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def query(pipe, question, top_k_reader, top_k_retriever):
|
| 103 |
res = pipe.run(
|
| 104 |
+
query=question,
|
| 105 |
+
params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}},
|
| 106 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
return res
|
| 108 |
|
| 109 |
+
|
| 110 |
document_store = create_doc_store()
|
| 111 |
# pipe = create_pipe(document_store)
|
| 112 |
|
| 113 |
retriever = EmbeddingRetriever(
|
| 114 |
+
document_store=document_store,
|
| 115 |
+
embedding_model=retriever_model,
|
| 116 |
+
model_format="sentence_transformers",
|
| 117 |
)
|
| 118 |
# load the retriever model from huggingface model hub
|
| 119 |
sentence_encoder = SentenceTransformer(retriever_model)
|
| 120 |
|
| 121 |
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
| 122 |
+
# pipe = ExtractiveQAPipeline(reader, retriever)
|
| 123 |
+
# Custom built extractive QA pipeline
|
| 124 |
+
pipe = Pipeline()
|
| 125 |
+
pipe.add_node(component=PineconeSearch(), name="Retriever", inputs=["Query"])
|
| 126 |
+
pipe.add_node(component=reader, name="Reader", inputs=["Retriever"])
|
| 127 |
|
| 128 |
|
| 129 |
indexing_pipeline_with_classification = Pipeline()
|
|
|
|
| 145 |
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
|
| 146 |
)
|
| 147 |
|
| 148 |
+
|
| 149 |
def set_state_if_absent(key, value):
|
| 150 |
if key not in st.session_state:
|
| 151 |
st.session_state[key] = value
|
| 152 |
|
| 153 |
+
|
| 154 |
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
| 155 |
+
DEFAULT_QUESTION_AT_STARTUP = os.getenv(
|
| 156 |
+
"DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics."
|
| 157 |
+
)
|
| 158 |
+
DEFAULT_ANSWER_AT_STARTUP = os.getenv(
|
| 159 |
+
"DEFAULT_ANSWER_AT_STARTUP",
|
| 160 |
+
"7% more remote workers have been at their current organization for 5 years or fewer",
|
| 161 |
+
)
|
| 162 |
|
| 163 |
# Sliders
|
| 164 |
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
| 165 |
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
|
| 166 |
|
| 167 |
|
| 168 |
+
st.set_page_config(
|
| 169 |
+
page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png"
|
| 170 |
+
)
|
| 171 |
|
| 172 |
# Persistent state
|
| 173 |
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
|
|
|
|
| 181 |
st.session_state.results = None
|
| 182 |
st.session_state.raw_json = None
|
| 183 |
|
| 184 |
+
|
| 185 |
# Title
|
| 186 |
st.write("# Haystack Search Demo")
|
| 187 |
st.markdown(
|
|
|
|
| 209 |
f.write(data_file.getbuffer())
|
| 210 |
ALL_FILES.append(file_path)
|
| 211 |
st.sidebar.write(str(data_file.name) + " β
")
|
| 212 |
+
META_DATA.append({"filename": data_file.name})
|
| 213 |
+
|
| 214 |
+
data_files = []
|
| 215 |
+
|
| 216 |
|
| 217 |
if len(ALL_FILES) > 0:
|
| 218 |
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
|
| 219 |
+
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)[
|
| 220 |
+
"documents"
|
| 221 |
+
]
|
| 222 |
index_name = "qa_demo"
|
| 223 |
# we will use batches of 64
|
| 224 |
batch_size = 128
|
|
|
|
| 230 |
upload_count = 0
|
| 231 |
for i in range(0, len(docs), batch_size):
|
| 232 |
# find end of batch
|
| 233 |
+
i_end = min(i + batch_size, len(docs))
|
| 234 |
# extract batch
|
| 235 |
batch = [doc.content for doc in docs[i:i_end]]
|
| 236 |
# generate embeddings for batch
|
|
|
|
| 248 |
to_upsert = list(zip(ids, emb, meta))
|
| 249 |
# upsert/insert these records to pinecone
|
| 250 |
_ = index.upsert(vectors=to_upsert)
|
| 251 |
+
upload_count += batch_size
|
| 252 |
+
upload_percentage = min(int((upload_count / len(docs)) * 100), 100)
|
| 253 |
my_bar.progress(upload_percentage)
|
| 254 |
+
|
| 255 |
top_k_reader = st.sidebar.slider(
|
| 256 |
"Max. number of answers",
|
| 257 |
min_value=1,
|
|
|
|
| 277 |
# raw_json = upload_doc(data_file)
|
| 278 |
|
| 279 |
question = st.text_input(
|
| 280 |
+
value=st.session_state.question,
|
| 281 |
+
max_chars=100,
|
| 282 |
+
on_change=reset_results,
|
| 283 |
+
label="question",
|
| 284 |
+
label_visibility="hidden",
|
| 285 |
+
)
|
| 286 |
col1, col2 = st.columns(2)
|
| 287 |
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
| 288 |
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
|
|
|
| 291 |
run_pressed = col1.button("Run")
|
| 292 |
if run_pressed:
|
| 293 |
|
| 294 |
+
run_query = run_pressed or question != st.session_state.question
|
|
|
|
|
|
|
| 295 |
# Get results for query
|
| 296 |
if run_query and question:
|
| 297 |
reset_results()
|
| 298 |
st.session_state.question = question
|
| 299 |
|
| 300 |
+
with st.spinner("π§ Performing neural search on documents... \n "):
|
|
|
|
|
|
|
| 301 |
try:
|
| 302 |
+
st.session_state.results = query(
|
| 303 |
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
|
| 304 |
)
|
| 305 |
except JSONDecodeError as je:
|
| 306 |
+
st.error(
|
| 307 |
+
"π An error occurred reading the results. Is the document store working?"
|
| 308 |
+
)
|
| 309 |
except Exception as e:
|
| 310 |
logging.exception(e)
|
| 311 |
if "The server is busy processing requests" in str(e) or "503" in str(e):
|
|
|
|
| 318 |
|
| 319 |
st.write("## Results:")
|
| 320 |
|
| 321 |
+
for count, result in enumerate(st.session_state.results["answers"]):
|
| 322 |
answer, context = result.answer, result.context
|
| 323 |
start_idx = context.find(answer)
|
| 324 |
end_idx = start_idx + len(answer)
|
| 325 |
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
|
| 326 |
try:
|
| 327 |
+
filename = result.meta["title"]
|
| 328 |
st.write(
|
| 329 |
+
markdown(
|
| 330 |
+
f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '
|
| 331 |
+
),
|
| 332 |
+
unsafe_allow_html=True,
|
| 333 |
+
)
|
| 334 |
except:
|
| 335 |
+
filename = result.meta.get("filename", "")
|
| 336 |
st.write(
|
| 337 |
+
markdown(
|
| 338 |
+
f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '
|
| 339 |
+
),
|
| 340 |
+
unsafe_allow_html=True,
|
| 341 |
)
|
|
|
|
|
|
|
|
|