# app.py import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings import torch import os # Load FAISS vectorstore embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vectorstore = FAISS.load_local("embeddings/am_index", embedding_model, allow_dangerous_deserialization=True) # Load model model_name = "HuggingFaceH4/zephyr-7b-beta" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # QA Function def generate_answer(query, api_key): if api_key.strip() != "am123456": return "❌ Invalid API Key." docs = vectorstore.similarity_search(query, k=2) context = "\n".join([doc.page_content for doc in docs]) prompt = f"""You are a domain expert in Additive Manufacturing. Based on the context, answer the following question in a short and precise paragraph. ### Context: {context} ### Question: {query} ### Answer: """ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.5, top_p=0.95, do_sample=False) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) final_answer = decoded.split("### Answer:")[-1].strip() return final_answer # Gradio UI with gr.Blocks(css=""" #main-title { width: 50%; } .image-class { float: right; width: 50px; margin-left: auto; } """) as demo: with gr.Row(): gr.Markdown("## 🧠 Additive Manufacturing LLM", elem_id="main-title") gr.Image("logo.png", elem_id="logo", show_label=False, show_download_button=False, height=50, container=False) gr.Markdown("Answer technical questions with a focused and clean response. No extra metadata.") query = gr.Textbox(label="Ask your Additive Manufacturing question") key = gr.Textbox(label="Enter API Key (e.g., am123456)") output = gr.Textbox(label="Answer") btn = gr.Button("Get Answer") btn.click(fn=generate_answer, inputs=[query, key], outputs=output) gr.Markdown("### 🎉 Hosted permanently on Hugging Face Spaces") if __name__ == "__main__": demo.launch()