Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
# Model name from Hugging Face
|
| 5 |
+
model_name = "segolilylabs/Lily-Cybersecurity-7B-v0.2"
|
| 6 |
+
|
| 7 |
+
# Load the tokenizer and model
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
def generate_text(input_text):
|
| 12 |
+
# Tokenize the input text
|
| 13 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 14 |
+
|
| 15 |
+
# Generate output from the model
|
| 16 |
+
outputs = model.generate(**inputs, max_length=100)
|
| 17 |
+
|
| 18 |
+
# Decode the output tokens back into text
|
| 19 |
+
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 20 |
+
|
| 21 |
+
return output_text
|
| 22 |
+
|
| 23 |
+
# Create a Gradio interface
|
| 24 |
+
demo = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
| 25 |
+
|
| 26 |
+
# Launch the app
|
| 27 |
+
demo.launch()
|