Create dspy_modules.py
Browse files- dspy_modules.py +224 -0
dspy_modules.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# api/dspy_modules.py
|
| 2 |
+
import dspy
|
| 3 |
+
import json
|
| 4 |
+
import logging
|
| 5 |
+
from typing import Optional, Dict, Any, List
|
| 6 |
+
|
| 7 |
+
from dspy_signatures import (
|
| 8 |
+
InitialResourceSummarySignature, DynamicSummarizationSignature,
|
| 9 |
+
SyllabusNoResourcesSignature, SyllabusWithRawTextSignature, SyllabusWithSummariesSignature,
|
| 10 |
+
SyllabusNegotiationSignature, LearningStyleSignature, PersonaPromptBodyPredictSignature,
|
| 11 |
+
GenericInteractionSignature
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class InitialResourceSummarizer(dspy.Module):
|
| 19 |
+
def __init__(self):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.summarize = dspy.Predict(InitialResourceSummarySignature)
|
| 22 |
+
|
| 23 |
+
def forward(self, extracted_basedata_dict: Dict[str, str]):
|
| 24 |
+
# Convert dict to JSON string for the input field
|
| 25 |
+
json_input_str = json.dumps(extracted_basedata_dict, indent=2)
|
| 26 |
+
prediction = self.summarize(resource_excerpts_json=json_input_str)
|
| 27 |
+
return prediction.summary_report # Means Return Output and There is
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class DynamicResourceSummarizerModule(dspy.Module):
|
| 32 |
+
def __init__(self):
|
| 33 |
+
super().__init__()
|
| 34 |
+
# Using Predict, as the task is to generate a structured string based on clear instructions.
|
| 35 |
+
# If formatting is tricky, ChainOfThought could be an alternative.
|
| 36 |
+
self.generate_json_summary = dspy.Predict(DynamicSummarizationSignature)
|
| 37 |
+
|
| 38 |
+
def forward(self,
|
| 39 |
+
resource_content: str,
|
| 40 |
+
resource_identifier: str,
|
| 41 |
+
conversation_history_str: str, # Takes the list of dicts
|
| 42 |
+
max_length: int = 100000 # Consistent with your original function
|
| 43 |
+
) -> Optional[Dict[str, Any]]: # Returns a Python dict or None
|
| 44 |
+
|
| 45 |
+
if not resource_content.strip():
|
| 46 |
+
print(f"[DynamicResourceSummarizerModule] Skipping empty resource: {resource_identifier}")
|
| 47 |
+
return None
|
| 48 |
+
|
| 49 |
+
truncated_content = resource_content[:max_length]
|
| 50 |
+
if len(resource_content) > max_length:
|
| 51 |
+
print(f"[DynamicResourceSummarizerModule] INFO: Resource '{resource_identifier}' truncated to {max_length} chars.")
|
| 52 |
+
|
| 53 |
+
# Format conversation history for the signature's input field
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
# Call the DSPy Predictor
|
| 57 |
+
prediction = self.generate_json_summary(
|
| 58 |
+
conversation_history_str=conversation_history_str,
|
| 59 |
+
resource_identifier_str=resource_identifier,
|
| 60 |
+
learning_material_excerpt_str=truncated_content
|
| 61 |
+
)
|
| 62 |
+
raw_json_string_output = prediction.json_summary_str
|
| 63 |
+
|
| 64 |
+
# Parse the JSON string output from the LLM
|
| 65 |
+
# (Similar parsing logic as in your original summarize_single_resource_dynamically)
|
| 66 |
+
cleaned_json_str = raw_json_string_output.strip()
|
| 67 |
+
if cleaned_json_str.startswith("```json"):
|
| 68 |
+
cleaned_json_str = cleaned_json_str[len("```json"):]
|
| 69 |
+
elif cleaned_json_str.startswith("```"):
|
| 70 |
+
cleaned_json_str = cleaned_json_str[len("```"):]
|
| 71 |
+
if cleaned_json_str.endswith("```"):
|
| 72 |
+
cleaned_json_str = cleaned_json_str[:-len("```")]
|
| 73 |
+
cleaned_json_str = cleaned_json_str.strip()
|
| 74 |
+
print("1")
|
| 75 |
+
print(cleaned_json_str)
|
| 76 |
+
|
| 77 |
+
if not cleaned_json_str:
|
| 78 |
+
print(f"WARN [DynamicResourceSummarizerModule]: LLM returned empty string for JSON summary for '{resource_identifier}'.")
|
| 79 |
+
return {"resource_identifier": resource_identifier, "raw_summary_text": raw_json_string_output, "is_fallback": True, "error": "Empty JSON string"}
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
summary_data_dict = json.loads(cleaned_json_str)
|
| 83 |
+
if isinstance(summary_data_dict, dict) and "resource_identifier" in summary_data_dict:
|
| 84 |
+
return summary_data_dict # Success!
|
| 85 |
+
else:
|
| 86 |
+
print(f"WARN [DynamicResourceSummarizerModule]: For '{resource_identifier}', LLM produced non-standard JSON structure after cleaning. Output: {raw_json_string_output[:200]}...")
|
| 87 |
+
return {"resource_identifier": resource_identifier, "raw_summary_text": raw_json_string_output, "is_fallback": True, "error": "Non-standard JSON structure"}
|
| 88 |
+
except json.JSONDecodeError:
|
| 89 |
+
print(f"WARN [DynamicResourceSummarizerModule]: Could not parse JSON from LLM summary for '{resource_identifier}'. Raw output: {raw_json_string_output[:200]}...")
|
| 90 |
+
return {"resource_identifier": resource_identifier, "raw_summary_text": raw_json_string_output, "is_fallback": True, "error": "JSONDecodeError"}
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"ERROR [DynamicResourceSummarizerModule]: Unexpected error during summarization for '{resource_identifier}': {e}")
|
| 94 |
+
import traceback
|
| 95 |
+
traceback.print_exc()
|
| 96 |
+
return {"resource_identifier": resource_identifier, "raw_summary_text": str(e), "is_fallback": True, "error": str(type(e).__name__)}
|
| 97 |
+
class SyllabusGeneratorRouter(dspy.Module):
|
| 98 |
+
def __init__(self):
|
| 99 |
+
super().__init__()
|
| 100 |
+
# Use ChainOfThought for potentially better structured output for syllabus generation
|
| 101 |
+
self.gen_no_resources = dspy.Predict(SyllabusNoResourcesSignature)
|
| 102 |
+
self.gen_with_raw = dspy.Predict(SyllabusWithRawTextSignature)
|
| 103 |
+
self.gen_with_summaries = dspy.Predict(SyllabusWithSummariesSignature)
|
| 104 |
+
|
| 105 |
+
def forward(self,
|
| 106 |
+
conversation_history_str: str,
|
| 107 |
+
#task_description: str,
|
| 108 |
+
resource_type: str, # "NONE", "RAW_TEXT", "SUMMARIES"
|
| 109 |
+
resource_content: Optional[str] = None, # Actual raw text or JSON summaries string
|
| 110 |
+
# existing_syllabus_xml: Optional[str] = None Not needed
|
| 111 |
+
) -> str: # Returns the syllabus_xml string
|
| 112 |
+
|
| 113 |
+
common_args = {
|
| 114 |
+
"learning_conversation": conversation_history_str,
|
| 115 |
+
#"task_description": #task_description,
|
| 116 |
+
# "existing_syllabus_xml": existing_syllabus_xml if existing_syllabus_xml else "None"
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
if resource_type == "NONE":
|
| 120 |
+
prediction = self.gen_no_resources(**common_args)
|
| 121 |
+
|
| 122 |
+
elif resource_type == "RAW_TEXT":
|
| 123 |
+
if not resource_content: raise ValueError("resource_content needed for RAW_TEXT type")
|
| 124 |
+
prediction = self.gen_with_raw(raw_resource_excerpts_json=resource_content, **common_args)
|
| 125 |
+
# prediction = await self.gen_with_raw.call(raw_resource_excerpts=resource_content, **common_args)
|
| 126 |
+
elif resource_type == "SUMMARIES":
|
| 127 |
+
if not resource_content: raise ValueError("resource_content needed for SUMMARIES type (should be JSON string)")
|
| 128 |
+
prediction = self.gen_with_summaries(resource_summaries_json=resource_content, **common_args)
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError(f"Unknown resource_type: {resource_type}")
|
| 131 |
+
|
| 132 |
+
# Post-process to ensure <syllabus> tags, as in your previous SyllabusGenerator
|
| 133 |
+
content = prediction.syllabus_xml.strip()
|
| 134 |
+
if not content.lower().startswith("<syllabus>"):
|
| 135 |
+
content = f"<syllabus>\n{content}"
|
| 136 |
+
if not content.lower().endswith("</syllabus>"):
|
| 137 |
+
content = f"{content}\n</syllabus>"
|
| 138 |
+
return content
|
| 139 |
+
|
| 140 |
+
class ConversationManager(dspy.Module):
|
| 141 |
+
def __init__(self):
|
| 142 |
+
super().__init__()
|
| 143 |
+
# Using Predict as the Signature is now quite detailed.
|
| 144 |
+
# If the LLM struggles to follow the conditional logic for display_text,
|
| 145 |
+
# ChainOfThought might be needed, or more explicit examples in the Signature.
|
| 146 |
+
self.manage = dspy.Predict(SyllabusNegotiationSignature)
|
| 147 |
+
|
| 148 |
+
def forward(self, conversation_history_str: str, current_syllabus_xml: str, user_input: str):
|
| 149 |
+
# The user_input is the latest turn, but the full context is in conversation_history.
|
| 150 |
+
# The Signature is designed to look at the user_input in context of the whole history.
|
| 151 |
+
prediction = self.manage(
|
| 152 |
+
conversation_history_str=conversation_history_str,
|
| 153 |
+
current_syllabus_xml=current_syllabus_xml,
|
| 154 |
+
user_input=user_input, # Pass the latest user input specifically
|
| 155 |
+
# resource_summary=resource_summary
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
action = prediction.action_code.strip().upper()
|
| 159 |
+
text_to_display = prediction.display_text.strip()
|
| 160 |
+
|
| 161 |
+
# Enforce display_text rules based on the Signature's instructions
|
| 162 |
+
if action in ["GENERATE", "MODIFY", "FINALIZE"]:
|
| 163 |
+
if text_to_display and text_to_display.upper() != "[NO_DISPLAY_TEXT]":
|
| 164 |
+
print(f"[ConversationManager WARNING] Action '{action}' returned with display_text: '{text_to_display}'. Forcing to empty as per rules.")
|
| 165 |
+
text_to_display = "" # Enforce empty
|
| 166 |
+
elif text_to_display.upper() == "[NO_DISPLAY_TEXT]":
|
| 167 |
+
text_to_display = ""
|
| 168 |
+
|
| 169 |
+
# For PERSONA, allow brief confirmation or empty. If it's placeholder, make empty.
|
| 170 |
+
if action == "PERSONA" and text_to_display.upper() == "[NO_DISPLAY_TEXT]":
|
| 171 |
+
text_to_display = ""
|
| 172 |
+
|
| 173 |
+
return action, text_to_display
|
| 174 |
+
|
| 175 |
+
class LearningStyleQuestioner(dspy.Module):
|
| 176 |
+
def __init__(self):
|
| 177 |
+
super().__init__()
|
| 178 |
+
self.ask = dspy.Predict(LearningStyleSignature)
|
| 179 |
+
|
| 180 |
+
def forward(self, conversation_history_str: str):
|
| 181 |
+
prediction = self.ask(conversation_history_with_final_syllabus=conversation_history_str)
|
| 182 |
+
return prediction.question_to_user
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class PersonaPromptGenerator(dspy.Module):
|
| 186 |
+
def __init__(self):
|
| 187 |
+
super().__init__()
|
| 188 |
+
# Switched to dspy.Predict with the new signature
|
| 189 |
+
self.generate_prompt_body = dspy.Predict(PersonaPromptBodyPredictSignature)
|
| 190 |
+
|
| 191 |
+
def forward(self,conversation_history_str: str):
|
| 192 |
+
try:
|
| 193 |
+
# Call the dspy.Predict instance
|
| 194 |
+
prediction_object = self.generate_prompt_body(
|
| 195 |
+
conversation_history_with_style_and_syllabus_context=conversation_history_str
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
prompt_body = prediction_object.prompt_body_text
|
| 199 |
+
|
| 200 |
+
if not prompt_body or not prompt_body.strip():
|
| 201 |
+
print("[PersonaPromptGenerator] Error: LLM returned an empty or whitespace-only prompt body.")
|
| 202 |
+
return None # Or a default fallback string
|
| 203 |
+
|
| 204 |
+
return prompt_body.strip() # Return the generated text
|
| 205 |
+
|
| 206 |
+
except Exception as e:
|
| 207 |
+
print(f"[PersonaPromptGenerator] Error in forward pass: {e}")
|
| 208 |
+
import traceback
|
| 209 |
+
traceback.print_exc()
|
| 210 |
+
return None # Or a default fallback string
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class ExplainerModule(dspy.Module): # Renamed for clarity
|
| 214 |
+
def __init__(self):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.explain = dspy.Predict(GenericInteractionSignature)
|
| 217 |
+
|
| 218 |
+
def forward(self, system_instructions_str: str, history_str: str, user_query_str: str) -> str: # Made async
|
| 219 |
+
prediction = self.explain( # await predict
|
| 220 |
+
system_instructions=system_instructions_str,
|
| 221 |
+
history=history_str,
|
| 222 |
+
user_query=user_query_str
|
| 223 |
+
)
|
| 224 |
+
return prediction.response.strip()
|