Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
# TOOLS
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import gradio as gr
|
| 5 |
import logging
|
|
@@ -10,28 +8,36 @@ from llama_index.core.tools import FunctionTool
|
|
| 10 |
from duckduckgo_search import DDGS
|
| 11 |
from sentence_transformers import SentenceTransformer
|
| 12 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 13 |
-
from llama_index.llms.
|
| 14 |
-
|
| 15 |
import numpy as np
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 19 |
-
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
class QuestionValidation:
|
| 25 |
-
def __init__(self, hf_token: str):
|
| 26 |
-
self.client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def guess_question(self, answer: str) -> str:
|
| 32 |
prompt = f"This was the answer: {answer}\nWhat question would likely have led to it?"
|
| 33 |
-
|
| 34 |
-
return response
|
| 35 |
|
| 36 |
def compute_similarity(self, q1: str, q2: str) -> float:
|
| 37 |
embeddings = self.embedding_model.encode([q1, q2])
|
|
@@ -45,17 +51,14 @@ class QuestionValidation:
|
|
| 45 |
"similarity": round(float(similarity), 4)
|
| 46 |
}
|
| 47 |
|
|
|
|
| 48 |
def search_web(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
| 49 |
try:
|
| 50 |
with DDGS() as ddgs:
|
| 51 |
-
|
| 52 |
-
return results
|
| 53 |
except Exception as e:
|
| 54 |
return [{"error": str(e)}]
|
| 55 |
|
| 56 |
-
import ast
|
| 57 |
-
import operator as op
|
| 58 |
-
|
| 59 |
OPERATORS = {
|
| 60 |
ast.Add: op.add,
|
| 61 |
ast.Sub: op.sub,
|
|
@@ -71,29 +74,23 @@ OPERATORS = {
|
|
| 71 |
def evaluate_math_expression(expr: str) -> str:
|
| 72 |
try:
|
| 73 |
node = ast.parse(expr, mode="eval")
|
| 74 |
-
|
| 75 |
def _eval(node):
|
| 76 |
if isinstance(node, ast.Expression):
|
| 77 |
return _eval(node.body)
|
| 78 |
-
elif isinstance(node, ast.
|
| 79 |
-
return node.
|
| 80 |
-
elif isinstance(node, ast.Constant):
|
| 81 |
-
if isinstance(node.value, (int, float)):
|
| 82 |
-
return node.value
|
| 83 |
elif isinstance(node, ast.BinOp):
|
| 84 |
return OPERATORS[type(node.op)](_eval(node.left), _eval(node.right))
|
| 85 |
elif isinstance(node, ast.UnaryOp):
|
| 86 |
return OPERATORS[type(node.op)](_eval(node.operand))
|
| 87 |
else:
|
| 88 |
raise ValueError(f"Unsupported expression: {ast.dump(node)}")
|
| 89 |
-
|
| 90 |
-
result = _eval(node)
|
| 91 |
-
return str(result)
|
| 92 |
except Exception as e:
|
| 93 |
return f"Error evaluating expression: {e}"
|
| 94 |
|
| 95 |
-
|
| 96 |
-
validator = QuestionValidation(
|
| 97 |
|
| 98 |
validate_tool = FunctionTool.from_defaults(
|
| 99 |
fn=validator.validate_question_only,
|
|
@@ -115,20 +112,6 @@ math_tool = FunctionTool.from_defaults(
|
|
| 115 |
|
| 116 |
TOOLS = [validate_tool, search_tool, math_tool]
|
| 117 |
|
| 118 |
-
from llama_index.core.agent import ReActAgent
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 122 |
-
|
| 123 |
-
llm = HuggingFaceLLM(
|
| 124 |
-
context_window=4096,
|
| 125 |
-
max_new_tokens=512,
|
| 126 |
-
generate_kwargs={"temperature": 0.7, "top_p": 0.95},
|
| 127 |
-
tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
|
| 128 |
-
model_name="HuggingFaceH4/zephyr-7b-beta",
|
| 129 |
-
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
agent = ReActAgent.from_tools(
|
| 133 |
tools=TOOLS,
|
| 134 |
llm=llm,
|
|
@@ -136,6 +119,7 @@ agent = ReActAgent.from_tools(
|
|
| 136 |
max_iterations=3
|
| 137 |
)
|
| 138 |
|
|
|
|
| 139 |
def question_loop_agent(user_question: str):
|
| 140 |
llm_answer = llm.complete(user_question).text.strip()
|
| 141 |
similarity_score = 0.0
|
|
@@ -156,57 +140,42 @@ def question_loop_agent(user_question: str):
|
|
| 156 |
f"Similarity Score: {similarity_score:.4f}"
|
| 157 |
)
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
):
|
| 196 |
-
token = message.choices[0].delta.content
|
| 197 |
-
response += token
|
| 198 |
-
yield response
|
| 199 |
-
|
| 200 |
-
demo = gr.ChatInterface(
|
| 201 |
-
respond,
|
| 202 |
-
additional_inputs=[
|
| 203 |
-
gr.Textbox(value="You are a Chatbot.", label="System message"),
|
| 204 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 205 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 206 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 207 |
-
],
|
| 208 |
-
)
|
| 209 |
|
| 210 |
if __name__ == "__main__":
|
| 211 |
-
|
| 212 |
-
demo.launch() # Uncomment to run the chat template toon
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import logging
|
|
|
|
| 8 |
from duckduckgo_search import DDGS
|
| 9 |
from sentence_transformers import SentenceTransformer
|
| 10 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 11 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 12 |
+
from llama_index.core.agent import ReActAgent
|
| 13 |
import numpy as np
|
| 14 |
+
import ast
|
| 15 |
+
import operator as op
|
| 16 |
|
| 17 |
+
# === Setup ===
|
|
|
|
|
|
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# === LLM Setup (Shared) ===
|
| 24 |
+
llm = HuggingFaceLLM(
|
| 25 |
+
context_window=4096,
|
| 26 |
+
max_new_tokens=512,
|
| 27 |
+
generate_kwargs={"temperature": 0.7, "top_p": 0.95},
|
| 28 |
+
tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
|
| 29 |
+
model_name="HuggingFaceH4/zephyr-7b-beta",
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# === Question Validation Component ===
|
| 33 |
+
class QuestionValidation:
|
| 34 |
+
def __init__(self, llm_client):
|
| 35 |
+
self.client = llm_client
|
| 36 |
+
self.embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 37 |
|
| 38 |
def guess_question(self, answer: str) -> str:
|
| 39 |
prompt = f"This was the answer: {answer}\nWhat question would likely have led to it?"
|
| 40 |
+
return self.client.complete(prompt).text.strip()
|
|
|
|
| 41 |
|
| 42 |
def compute_similarity(self, q1: str, q2: str) -> float:
|
| 43 |
embeddings = self.embedding_model.encode([q1, q2])
|
|
|
|
| 51 |
"similarity": round(float(similarity), 4)
|
| 52 |
}
|
| 53 |
|
| 54 |
+
# === Tools ===
|
| 55 |
def search_web(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
| 56 |
try:
|
| 57 |
with DDGS() as ddgs:
|
| 58 |
+
return [r for r in ddgs.text(query, max_results=max_results)]
|
|
|
|
| 59 |
except Exception as e:
|
| 60 |
return [{"error": str(e)}]
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
OPERATORS = {
|
| 63 |
ast.Add: op.add,
|
| 64 |
ast.Sub: op.sub,
|
|
|
|
| 74 |
def evaluate_math_expression(expr: str) -> str:
|
| 75 |
try:
|
| 76 |
node = ast.parse(expr, mode="eval")
|
|
|
|
| 77 |
def _eval(node):
|
| 78 |
if isinstance(node, ast.Expression):
|
| 79 |
return _eval(node.body)
|
| 80 |
+
elif isinstance(node, ast.Constant):
|
| 81 |
+
return node.value
|
|
|
|
|
|
|
|
|
|
| 82 |
elif isinstance(node, ast.BinOp):
|
| 83 |
return OPERATORS[type(node.op)](_eval(node.left), _eval(node.right))
|
| 84 |
elif isinstance(node, ast.UnaryOp):
|
| 85 |
return OPERATORS[type(node.op)](_eval(node.operand))
|
| 86 |
else:
|
| 87 |
raise ValueError(f"Unsupported expression: {ast.dump(node)}")
|
| 88 |
+
return str(_eval(node))
|
|
|
|
|
|
|
| 89 |
except Exception as e:
|
| 90 |
return f"Error evaluating expression: {e}"
|
| 91 |
|
| 92 |
+
# Instantiate validator using shared LLM
|
| 93 |
+
validator = QuestionValidation(llm)
|
| 94 |
|
| 95 |
validate_tool = FunctionTool.from_defaults(
|
| 96 |
fn=validator.validate_question_only,
|
|
|
|
| 112 |
|
| 113 |
TOOLS = [validate_tool, search_tool, math_tool]
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
agent = ReActAgent.from_tools(
|
| 116 |
tools=TOOLS,
|
| 117 |
llm=llm,
|
|
|
|
| 119 |
max_iterations=3
|
| 120 |
)
|
| 121 |
|
| 122 |
+
# === Question Loop Logic ===
|
| 123 |
def question_loop_agent(user_question: str):
|
| 124 |
llm_answer = llm.complete(user_question).text.strip()
|
| 125 |
similarity_score = 0.0
|
|
|
|
| 140 |
f"Similarity Score: {similarity_score:.4f}"
|
| 141 |
)
|
| 142 |
|
| 143 |
+
# === Gradio Interfaces ===
|
| 144 |
+
with gr.Blocks() as app:
|
| 145 |
+
with gr.Tab("Validation Loop"):
|
| 146 |
+
gr.Interface(
|
| 147 |
+
fn=question_loop_agent,
|
| 148 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask me a question..."),
|
| 149 |
+
outputs="text",
|
| 150 |
+
title="Question Similarity Loop Agent",
|
| 151 |
+
description="Loops until the guessed question has a similarity score > 0.6."
|
| 152 |
+
).render()
|
| 153 |
+
|
| 154 |
+
with gr.Tab("Chat"):
|
| 155 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 156 |
+
messages = [{"role": "system", "content": system_message}]
|
| 157 |
+
for user, bot in history:
|
| 158 |
+
if user:
|
| 159 |
+
messages.append({"role": "user", "content": user})
|
| 160 |
+
if bot:
|
| 161 |
+
messages.append({"role": "assistant", "content": bot})
|
| 162 |
+
messages.append({"role": "user", "content": message})
|
| 163 |
+
|
| 164 |
+
response = ""
|
| 165 |
+
for msg in llm.chat(messages, stream=True):
|
| 166 |
+
token = msg.delta or ""
|
| 167 |
+
response += token
|
| 168 |
+
yield response
|
| 169 |
+
|
| 170 |
+
gr.ChatInterface(
|
| 171 |
+
respond,
|
| 172 |
+
additional_inputs=[
|
| 173 |
+
gr.Textbox(value="You are a Chatbot.", label="System message"),
|
| 174 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 175 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 176 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 177 |
+
],
|
| 178 |
+
).render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
if __name__ == "__main__":
|
| 181 |
+
app.launch()
|
|
|