Update scripts/custom_retriever.py
Browse files- scripts/custom_retriever.py +98 -63
scripts/custom_retriever.py
CHANGED
|
@@ -4,15 +4,21 @@ import time
|
|
| 4 |
import traceback
|
| 5 |
from typing import List, Optional
|
| 6 |
|
|
|
|
| 7 |
from cohere import AsyncClient
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
-
from llama_index.core import QueryBundle
|
|
|
|
| 10 |
from llama_index.core.retrievers import (
|
| 11 |
BaseRetriever,
|
|
|
|
| 12 |
VectorIndexRetriever,
|
| 13 |
)
|
| 14 |
from llama_index.core.schema import MetadataMode, NodeWithScore, QueryBundle
|
| 15 |
from llama_index.core.vector_stores import (
|
|
|
|
|
|
|
|
|
|
| 16 |
MetadataFilters,
|
| 17 |
)
|
| 18 |
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
|
@@ -36,10 +42,13 @@ class AsyncCohereRerank(CohereRerank):
|
|
| 36 |
nodes: List[NodeWithScore],
|
| 37 |
query_bundle: Optional[QueryBundle] = None,
|
| 38 |
) -> List[NodeWithScore]:
|
| 39 |
-
if query_bundle is None
|
|
|
|
|
|
|
| 40 |
return []
|
| 41 |
|
| 42 |
async_client = AsyncClient(api_key=self._api_key)
|
|
|
|
| 43 |
texts = [
|
| 44 |
node.node.get_content(metadata_mode=MetadataMode.EMBED)
|
| 45 |
for node in nodes
|
|
@@ -52,13 +61,19 @@ class AsyncCohereRerank(CohereRerank):
|
|
| 52 |
documents=texts,
|
| 53 |
)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
class CustomRetriever(BaseRetriever):
|
|
|
|
|
|
|
| 62 |
def __init__(
|
| 63 |
self,
|
| 64 |
vector_retriever: VectorIndexRetriever,
|
|
@@ -66,95 +81,115 @@ class CustomRetriever(BaseRetriever):
|
|
| 66 |
keyword_retriever=None,
|
| 67 |
mode: str = "AND",
|
| 68 |
) -> None:
|
| 69 |
-
super().__init__()
|
| 70 |
self._vector_retriever = vector_retriever
|
| 71 |
self._document_dict = document_dict
|
| 72 |
self._keyword_retriever = keyword_retriever
|
|
|
|
|
|
|
| 73 |
self._mode = mode
|
| 74 |
-
|
| 75 |
-
def retrieve(self, query: str, filters: Optional[MetadataFilters] = None) -> List[NodeWithScore]:
|
| 76 |
-
query_bundle = QueryBundle(query_str=query)
|
| 77 |
-
if filters:
|
| 78 |
-
self._vector_retriever.filters = filters
|
| 79 |
-
return self._retrieve(query_bundle)
|
| 80 |
-
|
| 81 |
-
async def aretrieve(self, query: str, filters: Optional[MetadataFilters] = None) -> List[NodeWithScore]:
|
| 82 |
-
query_bundle = QueryBundle(query_str=query)
|
| 83 |
-
if filters:
|
| 84 |
-
self._vector_retriever.filters = filters
|
| 85 |
-
return await self._aretrieve(query_bundle)
|
| 86 |
-
|
| 87 |
-
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
| 88 |
-
return asyncio.run(self._process_retrieval(query_bundle, is_async=False))
|
| 89 |
-
|
| 90 |
-
async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
| 91 |
-
return await self._process_retrieval(query_bundle, is_async=True)
|
| 92 |
|
| 93 |
async def _process_retrieval(
|
| 94 |
self, query_bundle: QueryBundle, is_async: bool = True
|
| 95 |
) -> List[NodeWithScore]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
start = time.time()
|
|
|
|
| 97 |
if is_async:
|
| 98 |
nodes = await self._vector_retriever.aretrieve(query_bundle)
|
| 99 |
else:
|
| 100 |
nodes = self._vector_retriever.retrieve(query_bundle)
|
| 101 |
|
|
|
|
| 102 |
if self._keyword_retriever:
|
| 103 |
-
|
| 104 |
-
await self._keyword_retriever.aretrieve(query_bundle)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
else:
|
| 108 |
-
keyword_nodes = []
|
| 109 |
|
|
|
|
|
|
|
| 110 |
combined_dict = {n.node.node_id: n for n in nodes}
|
| 111 |
combined_dict.update({n.node.node_id: n for n in keyword_nodes})
|
| 112 |
|
| 113 |
-
if self._keyword_retriever:
|
| 114 |
-
|
| 115 |
-
ids = set(combined_dict) & {n.node.node_id for n in keyword_nodes}
|
| 116 |
-
else:
|
| 117 |
-
ids = set(combined_dict)
|
| 118 |
else:
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
for node in filtered_nodes:
|
| 125 |
doc_id = node.node.source_node.node_id
|
| 126 |
-
if node.metadata
|
| 127 |
-
doc = self._document_dict
|
| 128 |
-
|
| 129 |
-
node.node.text = doc.text
|
| 130 |
node.node.node_id = doc_id
|
| 131 |
|
| 132 |
-
# Optional: rerank using Cohere
|
| 133 |
try:
|
| 134 |
reranker = (
|
| 135 |
-
AsyncCohereRerank(top_n=5)
|
| 136 |
-
if is_async
|
|
|
|
| 137 |
)
|
| 138 |
-
|
| 139 |
-
await reranker.apostprocess_nodes(
|
| 140 |
-
if is_async
|
|
|
|
| 141 |
)
|
| 142 |
except Exception as e:
|
| 143 |
-
print(f"
|
| 144 |
traceback.print_exc()
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
def
|
| 151 |
-
|
| 152 |
-
|
|
|
|
| 153 |
for node in nodes:
|
| 154 |
-
|
| 155 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
break
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import traceback
|
| 5 |
from typing import List, Optional
|
| 6 |
|
| 7 |
+
import tiktoken
|
| 8 |
from cohere import AsyncClient
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
+
from llama_index.core import Document, QueryBundle
|
| 11 |
+
from llama_index.core.async_utils import run_async_tasks
|
| 12 |
from llama_index.core.retrievers import (
|
| 13 |
BaseRetriever,
|
| 14 |
+
KeywordTableSimpleRetriever,
|
| 15 |
VectorIndexRetriever,
|
| 16 |
)
|
| 17 |
from llama_index.core.schema import MetadataMode, NodeWithScore, QueryBundle
|
| 18 |
from llama_index.core.vector_stores import (
|
| 19 |
+
FilterCondition,
|
| 20 |
+
FilterOperator,
|
| 21 |
+
MetadataFilter,
|
| 22 |
MetadataFilters,
|
| 23 |
)
|
| 24 |
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
|
|
|
| 42 |
nodes: List[NodeWithScore],
|
| 43 |
query_bundle: Optional[QueryBundle] = None,
|
| 44 |
) -> List[NodeWithScore]:
|
| 45 |
+
if query_bundle is None:
|
| 46 |
+
raise ValueError("Query bundle must be provided.")
|
| 47 |
+
if len(nodes) == 0:
|
| 48 |
return []
|
| 49 |
|
| 50 |
async_client = AsyncClient(api_key=self._api_key)
|
| 51 |
+
|
| 52 |
texts = [
|
| 53 |
node.node.get_content(metadata_mode=MetadataMode.EMBED)
|
| 54 |
for node in nodes
|
|
|
|
| 61 |
documents=texts,
|
| 62 |
)
|
| 63 |
|
| 64 |
+
new_nodes = []
|
| 65 |
+
for result in results.results:
|
| 66 |
+
new_node_with_score = NodeWithScore(
|
| 67 |
+
node=nodes[result.index].node, score=result.relevance_score
|
| 68 |
+
)
|
| 69 |
+
new_nodes.append(new_node_with_score)
|
| 70 |
+
|
| 71 |
+
return new_nodes
|
| 72 |
|
| 73 |
|
| 74 |
class CustomRetriever(BaseRetriever):
|
| 75 |
+
"""Custom retriever that performs both semantic search and hybrid search."""
|
| 76 |
+
|
| 77 |
def __init__(
|
| 78 |
self,
|
| 79 |
vector_retriever: VectorIndexRetriever,
|
|
|
|
| 81 |
keyword_retriever=None,
|
| 82 |
mode: str = "AND",
|
| 83 |
) -> None:
|
|
|
|
| 84 |
self._vector_retriever = vector_retriever
|
| 85 |
self._document_dict = document_dict
|
| 86 |
self._keyword_retriever = keyword_retriever
|
| 87 |
+
if mode not in ("AND", "OR"):
|
| 88 |
+
raise ValueError("Invalid mode. Use 'AND' or 'OR'")
|
| 89 |
self._mode = mode
|
| 90 |
+
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
async def _process_retrieval(
|
| 93 |
self, query_bundle: QueryBundle, is_async: bool = True
|
| 94 |
) -> List[NodeWithScore]:
|
| 95 |
+
|
| 96 |
+
if not isinstance(query_bundle, QueryBundle):
|
| 97 |
+
raise TypeError(f"Expected QueryBundle, got {type(query_bundle)}")
|
| 98 |
+
|
| 99 |
+
query_bundle.query_str = query_bundle.query_str.replace("\ninput is ", "").rstrip()
|
| 100 |
+
|
| 101 |
start = time.time()
|
| 102 |
+
|
| 103 |
if is_async:
|
| 104 |
nodes = await self._vector_retriever.aretrieve(query_bundle)
|
| 105 |
else:
|
| 106 |
nodes = self._vector_retriever.retrieve(query_bundle)
|
| 107 |
|
| 108 |
+
keyword_nodes = []
|
| 109 |
if self._keyword_retriever:
|
| 110 |
+
if is_async:
|
| 111 |
+
keyword_nodes = await self._keyword_retriever.aretrieve(query_bundle)
|
| 112 |
+
else:
|
| 113 |
+
keyword_nodes = self._keyword_retriever.retrieve(query_bundle)
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
vector_ids = {n.node.node_id for n in nodes}
|
| 116 |
+
keyword_ids = {n.node.node_id for n in keyword_nodes}
|
| 117 |
combined_dict = {n.node.node_id: n for n in nodes}
|
| 118 |
combined_dict.update({n.node.node_id: n for n in keyword_nodes})
|
| 119 |
|
| 120 |
+
if not self._keyword_retriever or not keyword_nodes:
|
| 121 |
+
retrieve_ids = vector_ids
|
|
|
|
|
|
|
|
|
|
| 122 |
else:
|
| 123 |
+
retrieve_ids = (
|
| 124 |
+
vector_ids.intersection(keyword_ids)
|
| 125 |
+
if self._mode == "AND"
|
| 126 |
+
else vector_ids.union(keyword_ids)
|
| 127 |
+
)
|
| 128 |
|
| 129 |
+
nodes = [combined_dict[rid] for rid in retrieve_ids]
|
| 130 |
+
nodes = self._filter_nodes_by_unique_doc_id(nodes)
|
| 131 |
|
| 132 |
+
for node in nodes:
|
|
|
|
| 133 |
doc_id = node.node.source_node.node_id
|
| 134 |
+
if node.metadata["retrieve_doc"]:
|
| 135 |
+
doc = self._document_dict[doc_id]
|
| 136 |
+
node.node.text = doc.text
|
|
|
|
| 137 |
node.node.node_id = doc_id
|
| 138 |
|
|
|
|
| 139 |
try:
|
| 140 |
reranker = (
|
| 141 |
+
AsyncCohereRerank(top_n=5, model="rerank-english-v3.0")
|
| 142 |
+
if is_async
|
| 143 |
+
else CohereRerank(top_n=5, model="rerank-english-v3.0")
|
| 144 |
)
|
| 145 |
+
nodes = (
|
| 146 |
+
await reranker.apostprocess_nodes(nodes, query_bundle)
|
| 147 |
+
if is_async
|
| 148 |
+
else reranker.postprocess_nodes(nodes, query_bundle)
|
| 149 |
)
|
| 150 |
except Exception as e:
|
| 151 |
+
print(f"Error during reranking: {type(e).__name__}: {str(e)}")
|
| 152 |
traceback.print_exc()
|
| 153 |
|
| 154 |
+
nodes_filtered = self._filter_by_score_and_tokens(nodes)
|
| 155 |
+
|
| 156 |
+
duration = time.time() - start
|
| 157 |
+
print(f"Retrieving nodes took {duration:.2f}s")
|
| 158 |
+
|
| 159 |
+
return nodes_filtered[:5]
|
| 160 |
|
| 161 |
+
def _filter_nodes_by_unique_doc_id(
|
| 162 |
+
self, nodes: List[NodeWithScore]
|
| 163 |
+
) -> List[NodeWithScore]:
|
| 164 |
+
unique_nodes = {}
|
| 165 |
for node in nodes:
|
| 166 |
+
doc_id = node.node.source_node.node_id
|
| 167 |
+
if doc_id is not None and doc_id not in unique_nodes:
|
| 168 |
+
unique_nodes[doc_id] = node
|
| 169 |
+
return list(unique_nodes.values())
|
| 170 |
+
|
| 171 |
+
def _filter_by_score_and_tokens(
|
| 172 |
+
self, nodes: List[NodeWithScore]
|
| 173 |
+
) -> List[NodeWithScore]:
|
| 174 |
+
nodes_filtered = []
|
| 175 |
+
total_tokens = 0
|
| 176 |
+
enc = tiktoken.encoding_for_model("gpt-4") # tokenizer model name is fine for now
|
| 177 |
+
|
| 178 |
+
for node in nodes:
|
| 179 |
+
if node.score < 0.10:
|
| 180 |
+
continue
|
| 181 |
+
|
| 182 |
+
node_tokens = len(enc.encode(node.node.text))
|
| 183 |
+
if total_tokens + node_tokens > 100_000:
|
| 184 |
break
|
| 185 |
+
|
| 186 |
+
total_tokens += node_tokens
|
| 187 |
+
nodes_filtered.append(node)
|
| 188 |
+
|
| 189 |
+
return nodes_filtered
|
| 190 |
+
|
| 191 |
+
async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
| 192 |
+
return await self._process_retrieval(query_bundle, is_async=True)
|
| 193 |
+
|
| 194 |
+
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
| 195 |
+
return asyncio.run(self._process_retrieval(query_bundle, is_async=False))
|