Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,92 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
-
import faiss
|
| 5 |
-
import numpy as np
|
| 6 |
-
import streamlit as st
|
| 7 |
-
|
| 8 |
-
# Load the datasets from Hugging Face
|
| 9 |
-
datasets_dict = {
|
| 10 |
-
"BillSum": load_dataset("billsum"),
|
| 11 |
-
"EurLex": load_dataset("eurlex")
|
| 12 |
-
}
|
| 13 |
-
|
| 14 |
-
# Load the T5 model and tokenizer for summarization
|
| 15 |
-
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
| 16 |
-
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
| 17 |
-
|
| 18 |
-
# Initialize variables for the selected dataset
|
| 19 |
-
selected_dataset = "BillSum"
|
| 20 |
-
documents = []
|
| 21 |
-
titles = []
|
| 22 |
-
|
| 23 |
-
# Prepare the dataset for retrieval based on user selection
|
| 24 |
-
def prepare_dataset(dataset_name):
|
| 25 |
-
global documents, titles
|
| 26 |
-
dataset = datasets_dict[dataset_name]
|
| 27 |
-
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
| 28 |
-
titles = dataset['train']['title'][:100] # Get corresponding titles
|
| 29 |
-
|
| 30 |
-
prepare_dataset(selected_dataset)
|
| 31 |
-
|
| 32 |
-
# Function to embed text for retrieval
|
| 33 |
-
def embed_text(text):
|
| 34 |
-
input_ids = t5_tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
| 35 |
-
with torch.no_grad():
|
| 36 |
-
outputs = t5_model.encoder(input_ids)
|
| 37 |
-
return outputs.last_hidden_state.mean(dim=1).numpy()
|
| 38 |
-
|
| 39 |
-
# Create embeddings for the documents
|
| 40 |
-
doc_embeddings = np.vstack([embed_text(doc) for doc in documents]).astype(np.float32)
|
| 41 |
-
|
| 42 |
-
# Initialize FAISS index
|
| 43 |
-
index = faiss.IndexFlatL2(doc_embeddings.shape[1])
|
| 44 |
-
index.add(doc_embeddings)
|
| 45 |
-
|
| 46 |
-
# Define functions for retrieving and summarizing cases
|
| 47 |
-
def retrieve_cases(query, top_k=3):
|
| 48 |
-
query_embedding = embed_text(query)
|
| 49 |
-
distances, indices = index.search(query_embedding, top_k)
|
| 50 |
-
return [(documents[i], titles[i]) for i in indices[0]] # Return documents and their titles
|
| 51 |
-
|
| 52 |
-
def summarize_cases(cases):
|
| 53 |
-
summaries = []
|
| 54 |
-
for case, _ in cases:
|
| 55 |
-
input_ids = t5_tokenizer.encode(case, return_tensors="pt", max_length=512, truncation=True)
|
| 56 |
-
outputs = t5_model.generate(input_ids, max_length=60, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
| 57 |
-
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 58 |
-
summaries.append(summary)
|
| 59 |
-
return summaries
|
| 60 |
-
|
| 61 |
-
# Step 3: Streamlit App Code
|
| 62 |
-
st.title("Legal Case Summarizer")
|
| 63 |
-
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
| 64 |
-
|
| 65 |
-
# Dropdown for selecting dataset
|
| 66 |
-
dataset_options = list(datasets_dict.keys())
|
| 67 |
-
selected_dataset = st.selectbox("Choose a dataset:", dataset_options)
|
| 68 |
-
|
| 69 |
-
# Prepare the selected dataset
|
| 70 |
-
prepare_dataset(selected_dataset)
|
| 71 |
-
|
| 72 |
-
query = st.text_input("Enter search keywords:", "healthcare")
|
| 73 |
-
|
| 74 |
-
if st.button("Retrieve and Summarize Cases"):
|
| 75 |
-
with st.spinner("Retrieving and summarizing cases..."):
|
| 76 |
-
cases = retrieve_cases(query)
|
| 77 |
-
if cases:
|
| 78 |
-
summaries = summarize_cases(cases)
|
| 79 |
-
for i, (case, title) in enumerate(cases):
|
| 80 |
-
summary = summaries[i]
|
| 81 |
-
st.write(f"### Case {i + 1}")
|
| 82 |
-
st.write(f"**Title:** {title}")
|
| 83 |
-
st.write(f"**Case Text:** {case}")
|
| 84 |
-
st.write(f"**Summary:** {summary}")
|
| 85 |
-
else:
|
| 86 |
-
st.write("No cases found for the given query.")
|
| 87 |
-
|
| 88 |
-
st.write("Using T5 for summarization and retrieval.")
|
| 89 |
-
import torch
|
| 90 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 91 |
from datasets import load_dataset
|
| 92 |
import faiss
|
|
@@ -96,7 +7,7 @@ import streamlit as st
|
|
| 96 |
# Load the datasets from Hugging Face
|
| 97 |
datasets_dict = {
|
| 98 |
"BillSum": load_dataset("billsum"),
|
| 99 |
-
"EurLex": load_dataset("eurlex")
|
| 100 |
}
|
| 101 |
|
| 102 |
# Load the T5 model and tokenizer for summarization
|
|
@@ -146,7 +57,7 @@ def summarize_cases(cases):
|
|
| 146 |
summaries.append(summary)
|
| 147 |
return summaries
|
| 148 |
|
| 149 |
-
#
|
| 150 |
st.title("Legal Case Summarizer")
|
| 151 |
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 2 |
from datasets import load_dataset
|
| 3 |
import faiss
|
|
|
|
| 7 |
# Load the datasets from Hugging Face
|
| 8 |
datasets_dict = {
|
| 9 |
"BillSum": load_dataset("billsum"),
|
| 10 |
+
"EurLex": load_dataset("eurlex", trust_remote_code=True) # Set trust_remote_code=True
|
| 11 |
}
|
| 12 |
|
| 13 |
# Load the T5 model and tokenizer for summarization
|
|
|
|
| 57 |
summaries.append(summary)
|
| 58 |
return summaries
|
| 59 |
|
| 60 |
+
# Streamlit App Code
|
| 61 |
st.title("Legal Case Summarizer")
|
| 62 |
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
| 63 |
|