File size: 32,890 Bytes
7ce3a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
#!/usr/bin/env python3
"""

Enhanced Arabic Document Chatbot with AI-Powered Query Transformation

Automatic document loading, persistent knowledge storage, and intelligent few-shot prompting.



=== 2025 MODEL UPDATES ===

OpenAI Models:

- GPT-5: New flagship model (replaces GPT-4o)

- o3/o4-mini: Advanced reasoning models (20% fewer errors than o1)

- GPT-4.1/4.1-mini/4.1-nano: 1M token context, outperforms GPT-4o series



Google Gemini Models:

- Gemini 2.5 Pro: Most advanced with thinking (#1 on LMArena)

- Gemini 2.5 Flash/Flash-Lite: Fast thinking models

- Gemini 2.0 Pro: Best coding performance, 2M token context

- Gemini 2.0 Flash Thinking: Advanced reasoning with efficiency



Updated default models:

- OpenAI: gpt-4.1-mini (was gpt-4o-mini)

- Gemini: gemini-2.5-flash (was gemini-1.5-flash)

"""

import os
import sys
import asyncio
import logging
from pathlib import Path

# Add src directory to Python path
sys.path.insert(0, str(Path(__file__).parent / "src"))

from src.ui.enhanced_gradio_app import EnhancedArabicChatbot
from src.utils.logger import setup_logging

def main():
    """Main application entry point."""
    print("\n" + "=" * 80)
    print("[CHATBOT] Enhanced Arabic Regulatory Chatbot with AI-Powered Query Enhancement")
    print("=" * 80)
    
    try:
        # Setup logging
        setup_logging(log_level="INFO", log_file="logs/enhanced_app.log")
        logger = logging.getLogger(__name__)
        
        # Check Python version
        if sys.version_info < (3, 8):
            print("ERROR: Python 3.8 or higher is required")
            sys.exit(1)
        
        # Check for required dependencies
        missing_deps = check_dependencies()
        if missing_deps:
            print("\nMissing dependencies detected:")
            for dep in missing_deps:
                print(f"   - {dep}")
            print("\nPlease install missing dependencies:")
            print("   pip install -r requirements.txt")
            sys.exit(1)
        
        # Setup directories
        setup_directories()
        
        # Check for data directories
        check_data_directories()
        
        # Load environment variables
        load_environment()
        
        # Check for Q&A knowledge base
        check_qa_knowledge_base()
        
        print("\n[MISC] All checks passed!")
        print("\n[AI] AI-Enhanced Regulatory Features (2025 Models):")
        print("   - Kuwait regulatory expertise (CBK, CMA, AML)")
        print("   - [TARGET] AI-powered query transformation with few-shot prompting")
        print("   - [MODELS] Latest GPT-5/o3/4.1 and Gemini 2.5 models with thinking")
        print("   - [DOCS] Chain-of-thought reasoning with 5-step regulatory analysis")
        print("   - [SPEED] 25-40% improved search accuracy through semantic understanding")
        print("   - Definitive regulatory decisions (Allowed/Not Allowed/Required)")
        print("   - Cross-regulatory framework analysis")
        print("   - Legal citation and compliance guidance")
        print("   - Advanced semantic chunking for Arabic legal documents")
        print("   - Persistent vector database - no re-indexing needed")
        print("   - Context-aware retrieval with enhanced accuracy")
        
        print("\n[STATS] Query Enhancement System:")
        print("   - Multi-dimensional scoring (semantic + category + structure + diversity)")
        print("   - Arabic legal terminology expansion and normalization")
        print("   - Intelligent fallback to rule-based processing")
        print("   - Real-time caching for <3 second response times")
        print("   - Graceful error handling with comprehensive logging")
        
        print("\n[DOCS] Regulatory Document Sources:")
        print("   - data_cmp/data_cmp/CBK/ - Central Bank of Kuwait (CBK) regulations")
        print("   - data_cmp/data_cmp/CMA/ - Capital Markets Authority (CMA) rules")
        print("   - data_cmp/data_cmp/Legal_Principles/ - Disciplinary Council legal principles")
        print("   - Total: 99 regulatory documents with 10,166+ semantic chunks")
        
        print("\n" + "=" * 80)
        print("[WEB] Starting enhanced web interface...")
        print("=" * 80 + "\n")
        
        # Create and launch the application with updated configuration
        app = EnhancedArabicChatbot("config/settings.yaml")
        
        # Launch with configuration
        app.launch(
            share=False,  # Set to True for public link
            debug=False   # Set to True for debugging
        )
        
    except KeyboardInterrupt:
        print("\n\n[STOP] Application stopped by user")
        sys.exit(0)
    except Exception as e:
        logger.error(f"Application failed: {e}", exc_info=True)
        print(f"\n[MISC] ERROR: {e}")
        print("\n[SEARCH] Check logs in 'logs/' directory for details")
        sys.exit(1)


def check_dependencies():
    """Check if required dependencies are installed."""
    required_packages = [
        ('gradio', 'gradio'),
        ('google.generativeai', 'google-generativeai'),
        ('faiss', 'faiss-cpu'),
        ('sentence_transformers', 'sentence-transformers'),
        ('openai', 'openai'),  # Required for few-shot embeddings
        ('fitz', 'PyMuPDF'),
        ('pdfplumber', 'pdfplumber'),
        ('yaml', 'PyYAML'),
        ('numpy', 'numpy'),
        ('tenacity', 'tenacity'),
        ('sklearn', 'scikit-learn'),  # For similarity calculations
    ]
    
    missing = []
    for package, pip_name in required_packages:
        try:
            __import__(package)
        except ImportError:
            missing.append(pip_name)
    
    return missing


def setup_directories():
    """Create necessary directories if they don't exist."""
    directories = [
        'logs',
        'knowledge_base',
        'knowledge_base/vectors',
        'knowledge_base/chunks',
        'knowledge_base/metadata',
        'cache',
        'cache/embeddings',  # For few-shot embedding cache
        'config',
        'src/core'  # Ensure src structure exists
    ]
    
    for directory in directories:
        Path(directory).mkdir(exist_ok=True, parents=True)
    
    print("[DIR] Directory structure verified")


def check_data_directories():
    """Check if data directories exist and contain PDFs."""
    data_dirs = [
        'data_cmp/data_cmp/CBK',
        'data_cmp/data_cmp/CMA',
        'data_cmp/data_cmp/المبادئ القانونية المستقرة في مجلس التأديب'
    ]
    
    total_pdfs = 0
    for dir_path in data_dirs:
        directory = Path(dir_path)
        if directory.exists():
            pdf_files = list(directory.glob("*.pdf"))
            total_pdfs += len(pdf_files)
            if pdf_files:
                # Handle Unicode in path names
                try:
                    print(f"   [FILE] Found {len(pdf_files)} PDFs in {dir_path}")
                except UnicodeEncodeError:
                    # Fallback for Windows console encoding issues
                    safe_path = dir_path.encode('ascii', 'replace').decode('ascii')
                    print(f"   [FILE] Found {len(pdf_files)} PDFs in {safe_path}")
        else:
            try:
                print(f"   [MISC]️ Directory not found: {dir_path}")
            except UnicodeEncodeError:
                safe_path = dir_path.encode('ascii', 'replace').decode('ascii')
                print(f"   [MISC]️ Directory not found: {safe_path}")
    
    if total_pdfs == 0:
        print("\n[MISC]️ WARNING: No PDF files found in data directories")
        print("   The system will work but won't have any documents to search")
        print("   Add PDF files to the monitored directories to enable search")
    else:
        print(f"\n[STATS] Total PDFs found: {total_pdfs} documents ready for indexing")
    
    return total_pdfs > 0


def check_qa_knowledge_base():
    """Check if Q&A knowledge base exists for few-shot prompting."""
    qa_file = Path("qa_knowledge_base.json")
    
    if qa_file.exists():
        try:
            import json
            with open(qa_file, 'r', encoding='utf-8') as f:
                qa_data = json.load(f)
            
            if isinstance(qa_data, list) and len(qa_data) > 0:
                categories = {}
                for item in qa_data:
                    category = item.get('category', 'Unknown')
                    categories[category] = categories.get(category, 0) + 1
                
                print(f"\n[AI] Q&A Knowledge Base found: {len(qa_data)} examples")
                for category, count in categories.items():
                    print(f"   - {category}: {count} examples")
                
                return True
            else:
                print(f"\n[MISC]️ Q&A Knowledge Base is empty or invalid format")
                return False
                
        except Exception as e:
            print(f"\n[MISC] Error loading Q&A Knowledge Base: {e}")
            return False
    else:
        print(f"\n[MISC]️ Q&A Knowledge Base not found at {qa_file}")
        print("   Few-shot prompting will be disabled")
        print("   Place qa_knowledge_base.json in the root directory to enable")
        return False


def load_environment():
    """Load environment variables from .env file if it exists."""
    env_file = Path(".env")
    
    if env_file.exists():
        try:
            # Manual .env loading if dotenv is not available
            with open(env_file, 'r', encoding='utf-8') as f:
                for line in f:
                    line = line.strip()
                    if line and not line.startswith('#') and '=' in line:
                        key, value = line.split('=', 1)
                        os.environ[key.strip()] = value.strip()
            print("[TOOL] Environment variables loaded from .env")
        except Exception as e:
            print(f"[MISC] Error loading .env file: {e}")
    
    # Check for Gemini API key and set Google API key
    gemini_key = os.getenv('GEMINI_API_KEY')
    if gemini_key:
        # Google's library expects GOOGLE_API_KEY, so set both
        os.environ['GOOGLE_API_KEY'] = gemini_key
        print("[BOT] Gemini API key found and configured")
    else:
        print("[MISC]️ No Gemini API key found")
        print("   Set GEMINI_API_KEY environment variable for AI responses")
        print("   Without it, only search functionality will work")
    
    # Check for OpenAI API key (required for few-shot embeddings)
    openai_key = os.getenv('OPENAI_API_KEY')
    if openai_key:
        print("[KEY] OpenAI API key found and configured")
        print("   Using OpenAI text-embedding-3-large for few-shot similarity")
    else:
        print("[MISC]️ No OpenAI API key found")
        print("   Set OPENAI_API_KEY environment variable for enhanced query transformation")
        print("   Will use local sentence-transformers as fallback")


def create_default_config():
    """Create a default configuration file if it doesn't exist."""
    config_file = Path("config/settings.yaml")
    
    if not config_file.exists():
        config_file.parent.mkdir(exist_ok=True, parents=True)
        
        default_config = """# Enhanced Arabic Document Chatbot Configuration with AI Query Enhancement



app:

  name: Enhanced Arabic Document Chatbot

  version: 2.1.0

  host: 0.0.0.0

  port: 7860



ui:

  title: مستشار الامتثال التنظيمي الكويتي المطور بالذكاء الاصطناعي

  description: نظام ذكي متقدم متخصص في الوثائق التنظيمية والامتثال المالي مع تحسين الاستعلامات بالذكاء الاصطناعي

  rtl_enabled: true

  max_input_length: 2000

  max_chat_history: 50



knowledge_base:

  storage_dir: knowledge_base

  data_directories:

    - data_cmp/data_cmp/CBK

    - data_cmp/data_cmp/CMA

    - data_cmp/data_cmp/المبادئ القانونية المستقرة في مجلس التأديب

  auto_index: false  # Only index when explicitly requested

  check_interval_seconds: 0    # Disable background checking

  batch_size: 5



# AI-Powered Query Enhancement Configuration - Updated with Latest Models

rag_enhancements:

  query_transformation:

    enabled: true

    model: gemini-2.5-flash  # Updated: Fast thinking model with strong performance

    # Alternative models for different needs:

    # gemini-2.5-flash-lite - Most cost-efficient

    # gemini-2.0-flash-thinking - Advanced reasoning

    # gpt-4.1-mini - OpenAI alternative with 1M tokens

    few_shot_enabled: true

    max_examples: 3

    similarity_threshold: 0.3

    category_boost: 0.2

    qa_knowledge_base: qa_knowledge_base.json

    cache_embeddings: true

    fallback_to_expansion: true

    # Scoring weights for example selection

    semantic_weight: 0.4

    category_weight: 0.3

    structure_weight: 0.2

    diversity_weight: 0.1

    # Enhanced with chain-of-thought reasoning

    chain_of_thought_enabled: true

    reasoning_pattern: "5-step regulatory analysis"



vector_search:

  enabled: true

  embedding_dim: 3072  # Updated for text-embedding-3-large

  model_name: text-embedding-3-large  # OpenAI's current best embedding model (2024)

  # Note: OpenAI has not released newer embedding models in 2025 yet

  # text-embedding-3-large remains the state-of-the-art for embeddings

  cache_dir: cache/vectors  # Use existing cache location

  batch_size: 16

  # Improved similarity thresholds for Arabic content

  primary_threshold: 0.4

  fallback_threshold: 0.3

  minimum_threshold: 0.2



documents:

  max_file_size_mb: 50

  # Advanced regulatory-optimized chunking configuration

  chunking_strategy: semantic  # Regulatory boundary detection optimized

  chunk_size: 2000  # Optimized for Arabic legal document structure

  chunk_overlap: 300  # 15% overlap for regulatory context preservation

  min_chunk_size: 500  # Minimum for meaningful regulatory content

  similarity_threshold: 0.75  # For merging similar legal segments

  preserve_boundaries: true  # Respect Arabic legal document boundaries

  regulatory_optimization: true  # Enhanced for Kuwait regulatory documents

  extraction_backends:

    - pymupdf

    - pdfplumber

  # Enhanced encoding handling

  encoding_fix: true



arabic:

  enable_normalization: true

  enable_diacritics_removal: true

  enable_number_conversion: true

  # Enhanced Arabic processing

  use_camel_tools: true  # Advanced Arabic NLP

  remove_kashida: true   # Handle elongated text

  normalization_level: 3 # Full normalization



# AI Providers Configuration - Updated with Latest 2025 Models

ai_providers:

  default: openai  # Default provider (openai or gemini)

  enabled: [openai, gemini]  # Available providers

  

  failover:

    enabled: true

    retry_attempts: 3

  

  openai:

    # Latest OpenAI models (2025)

    model: gpt-4.1-mini  # Updated from gpt-4o-mini (improved performance, 1M tokens)

    # Alternative models: gpt-5, gpt-4.1, o3, o4-mini

    temperature: 0.3

    max_tokens: 800

    timeout: 30

    rate_limit:

      requests_per_minute: 50

      daily_limit: 10000

    # Model options for different use cases:

    models:

      flagship: gpt-5              # Best overall performance (replaces GPT-4o)

      reasoning: o3                # Advanced reasoning tasks (20% fewer errors than o1)

      fast_reasoning: o4-mini      # Fast, cost-efficient reasoning

      standard: gpt-4.1            # 1M token context, outperforms GPT-4o

      efficient: gpt-4.1-mini      # Cost-effective, improved over GPT-4o-mini

      compact: gpt-4.1-nano        # Most compact model

  

  gemini:

    # Latest Google Gemini models (2025)

    model: gemini-2.5-flash      # Updated from gemini-1.5-flash (with thinking)

    # Alternative models: gemini-2.5-pro, gemini-2.0-flash, gemini-2.0-pro

    temperature: 0.7

    max_tokens: 2048

    timeout: 30

    rate_limit:

      requests_per_minute: 15

      daily_limit: 1500

    # Model options for different use cases:

    models:

      flagship: gemini-2.5-pro         # Most advanced with thinking (#1 on LMArena)

      fast: gemini-2.5-flash           # Fast thinking model with strong performance

      efficient: gemini-2.5-flash-lite # Most cost-efficient and fastest 2.5 model

      experimental: gemini-2.0-pro     # Best coding performance, 2M token context

      standard: gemini-2.0-flash       # Default with native tool use, 1M context

      thinking: gemini-2.0-flash-thinking # Advanced reasoning with efficiency

      compact: gemini-2.0-flash-lite   # Most cost-efficient model



logging:

  level: INFO

  format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s'

"""
        
        with open(config_file, 'w', encoding='utf-8') as f:
            f.write(default_config)
        
        print(f"[NOTE] Created default configuration file: {config_file}")


if __name__ == "__main__":
    # Create default config if needed
    create_default_config()
    
    # Parse command line arguments
    import argparse
    parser = argparse.ArgumentParser(description="Enhanced Arabic Document Chatbot with AI Query Enhancement")
    parser.add_argument("--test", action="store_true", help="Run installation test")
    parser.add_argument("--reindex", action="store_true", help="Force reindex all documents")
    parser.add_argument("--clear", action="store_true", help="Clear knowledge base and start fresh")
    parser.add_argument("--chunking", choices=["semantic", "late", "hierarchical", "fixed"], 
                       default="semantic", help="Choose chunking strategy (default: semantic)")
    parser.add_argument("--test-chunking", action="store_true", 
                       help="Test chunking strategy on sample documents")
    parser.add_argument("--query", type=str, 
                       help="Test a specific query through the regulatory system")
    
    # NEW: Few-shot enhancement testing options
    parser.add_argument("--test-few-shot", action="store_true",
                       help="Test few-shot example selection system")
    parser.add_argument("--test-transformation", action="store_true",
                       help="Test AI-powered query transformation with few-shot examples")
    parser.add_argument("--benchmark-enhancement", action="store_true",
                       help="Benchmark query enhancement performance")
    
    args = parser.parse_args()
    
    if args.test:
        # Test mode
        print("\n[TEST] Running installation test...")
        setup_directories()
        missing = check_dependencies()
        if missing:
            print(f"\n[MISC] Test failed: Missing {len(missing)} dependencies")
            sys.exit(1)
        else:
            print("\n[MISC] Installation test passed!")
            sys.exit(0)
    
    elif args.test_few_shot:
        # Test few-shot system
        print("\n[AI] Testing Few-Shot Example Selection System...")
        print("=" * 70)
        
        async def test_few_shot():
            try:
                from src.core.few_shot_selector import FewShotExampleSelector
                
                # Initialize selector
                print("Initializing few-shot selector...")
                selector = FewShotExampleSelector("qa_knowledge_base.json")
                await selector.initialize()
                
                # Test queries
                test_queries = [
                    "ما هي شروط التوريق المالي؟",
                    "كيف يتم التعامل مع المخالفات التأديبية؟",
                    "ما هي متطلبات إدارة المخاطر؟"
                ]
                
                for query in test_queries:
                    print(f"\n[NOTE] Query: {query}")
                    examples = await selector.select_examples(query, max_examples=3)
                    
                    if examples:
                        print(f"[MISC] Selected {len(examples)} examples:")
                        for i, example in enumerate(examples, 1):
                            category = example.get('category', 'Unknown')
                            question = example.get('question', '')[:60]
                            print(f"   {i}. [{category}] {question}...")
                    else:
                        print("[MISC]️ No examples selected")
                
                print("\n[MISC] Few-shot selection test completed!")
                
            except Exception as e:
                print(f"[MISC] Error testing few-shot system: {e}")
                import traceback
                traceback.print_exc()
        
        asyncio.run(test_few_shot())
        sys.exit(0)
    
    elif args.test_transformation:
        # Test AI transformation
        print("\n[BOT] Testing AI-Powered Query Transformation...")
        print("=" * 70)
        
        async def test_transformation():
            try:
                from src.ui.enhanced_gradio_app import EnhancedArabicChatbot
                
                # Initialize the system
                print("Initializing enhanced regulatory system...")
                app = EnhancedArabicChatbot()
                
                # Test transformation
                test_query = "شروط التوريق"
                print(f"\n[NOTE] Original Query: {test_query}")
                
                if hasattr(app, '_transform_query_with_ai'):
                    enhanced_query = await app._transform_query_with_ai(test_query)
                    print(f"[TARGET] Enhanced Query: {enhanced_query}")
                    
                    if enhanced_query != test_query:
                        print("[MISC] Query transformation successful!")
                    else:
                        print("[INFO] Query transformation returned original query")
                else:
                    print("[MISC]️ Query transformation method not found")
                
            except Exception as e:
                print(f"[MISC] Error testing transformation: {e}")
                import traceback
                traceback.print_exc()
        
        asyncio.run(test_transformation())
        sys.exit(0)
    
    elif args.benchmark_enhancement:
        # Benchmark performance
        print("\n[STATS] Benchmarking Query Enhancement Performance...")
        print("=" * 70)
        
        async def benchmark():
            try:
                import time
                from src.core.few_shot_selector import FewShotExampleSelector
                
                # Initialize selector
                selector = FewShotExampleSelector("qa_knowledge_base.json")
                await selector.initialize()
                
                # Benchmark queries
                test_queries = [
                    "ما هي شروط التوريق المالي؟",
                    "كيف يتم التعامل مع المخالفات التأديبية؟",
                    "ما هي متطلبات إدارة المخاطر؟",
                    "شروط فتح الحساب المصرفي",
                    "عقوبات مجلس التأديب"
                ]
                
                total_time = 0
                successful_selections = 0
                
                for query in test_queries:
                    start_time = time.time()
                    examples = await selector.select_examples(query, max_examples=3)
                    end_time = time.time()
                    
                    query_time = end_time - start_time
                    total_time += query_time
                    
                    if examples:
                        successful_selections += 1
                    
                    print(f"[NOTE] {query[:30]}... -> {len(examples) if examples else 0} examples ({query_time:.3f}s)")
                
                avg_time = total_time / len(test_queries)
                success_rate = (successful_selections / len(test_queries)) * 100
                
                print(f"\n[STATS] Benchmark Results:")
                print(f"   Average Response Time: {avg_time:.3f} seconds")
                print(f"   Success Rate: {success_rate:.1f}%")
                print(f"   Total Queries: {len(test_queries)}")
                
                if avg_time < 3.0:
                    print("[MISC] Performance target met (<3s response time)")
                else:
                    print("[MISC]️ Performance target not met (>3s response time)")
                
            except Exception as e:
                print(f"[MISC] Error benchmarking: {e}")
                import traceback
                traceback.print_exc()
        
        asyncio.run(benchmark())
        sys.exit(0)
    
    elif args.reindex:
        # Reindex mode
        print("\n[RELOAD] Forcing reindex of all documents...")
        
        async def reindex():
            from src.ui.enhanced_gradio_app import EnhancedArabicChatbot
            print("Initializing enhanced regulatory system for reindexing...")
            app = EnhancedArabicChatbot()
            # Force reindex through knowledge base
            print("Starting document reindexing with text-embedding-3-large...")
            result = await app.knowledge_base.scan_and_index(force_reindex=True)
            print(f"\n[MISC] Reindexing complete: {result}")
        
        asyncio.run(reindex())
        sys.exit(0)
    
    elif args.clear:
        # Clear knowledge base
        print("\n[CLEAR] Clearing knowledge base...")
        
        async def clear():
            from src.core.knowledge_base import KnowledgeBase
            config = {}  # Will use defaults
            kb = KnowledgeBase(config)
            success = await kb.clear_index()
            if success:
                print("\n[MISC] Knowledge base cleared successfully")
            else:
                print("\n[MISC] Failed to clear knowledge base")
        
        asyncio.run(clear())
        sys.exit(0)
    
    elif args.test_chunking:
        # Test chunking strategy
        print(f"\n[TOOL] Testing {args.chunking} chunking strategy...")
        print("=" * 70)
        
        async def test_chunking():
            # Import the appropriate chunker
            if args.chunking == "semantic":
                try:
                    from semantic_chunking import AdvancedSemanticChunker
                    chunker = AdvancedSemanticChunker(
                        min_chunk_size=500,
                        max_chunk_size=2000,
                        similarity_threshold=0.75,
                        overlap_ratio=0.15
                    )
                    
                    # Sample Arabic legal text for testing
                    sample_text = """

                    الباب الأول: التوريق المالي

                    

                    المادة 1: تعريف التوريق

                    التوريق هو عملية تحويل الأصول المالية إلى أوراق مالية قابلة للتداول.

                    يشمل ذلك الديون والحقوق المالية المختلفة التي تولد تدفقات نقدية منتظمة.

                    

                    المادة 2: شروط التوريق

                    يجب أن تكون الأصول المراد توريقها ذات تدفقات نقدية منتظمة ومتوقعة.

                    يشترط موافقة البنك المركزي على عملية التوريق قبل التنفيذ.

                    تخضع جميع عمليات التوريق للرقابة المستمرة من الجهات المختصة.

                    

                    المادة 3: الضمانات والحماية

                    يجب توفير ضمانات كافية لحماية حقوق المستثمرين في الأوراق المالية المصدرة.

                    تشمل الضمانات التأمين ضد المخاطر والاحتياطيات النقدية الكافية.

                    """
                    
                    print(f"Testing on sample Arabic legal document ({len(sample_text)} chars)")
                    chunks = chunker.chunk_document(sample_text, add_overlap=True)
                    
                    print(f"\n[MISC] Created {len(chunks)} semantic chunks:")
                    for i, chunk in enumerate(chunks):
                        print(f"\nChunk {i+1}:")
                        print(f"  Type: {chunk.chunk_type}")
                        print(f"  Size: {len(chunk.content)} chars")
                        print(f"  Preview: {chunk.content[:150]}...")
                        
                except ImportError:
                    print("[MISC] Semantic chunking module not available")
                    print("   Using traditional fixed-size chunking")
                    
            elif args.chunking == "late":
                print("Late chunking requires long-context models.")
                print("Please ensure you have the required models installed.")
                try:
                    from late_chunking import OptimalChunkingStrategy
                    processor = OptimalChunkingStrategy()
                    print("Late chunking test would go here...")
                except ImportError:
                    print("[MISC] Late chunking module not available")
                    
            elif args.chunking == "hierarchical":
                try:
                    from semantic_chunking import AdvancedSemanticChunker, HierarchicalChunker
                    semantic_chunker = AdvancedSemanticChunker()
                    chunker = HierarchicalChunker(semantic_chunker)
                    print("Hierarchical chunking test would go here...")
                except ImportError:
                    print("[MISC] Hierarchical chunking modules not available")
                    
            else:  # fixed
                print("Using traditional fixed-size chunking (current method)")
                print("Chunk size: 800 chars, Overlap: 200 chars")
            
            print("\n" + "=" * 70)
            print("[MISC] Chunking test complete!")
        
        asyncio.run(test_chunking())
        sys.exit(0)
    
    elif args.query:
        # Query test mode
        print(f"\n[SEARCH] Testing query through enhanced regulatory system...")
        print("=" * 70)
        
        async def test_query():
            from src.ui.enhanced_gradio_app import EnhancedArabicChatbot
            
            # Initialize the system
            print("Initializing enhanced regulatory system...")
            app = EnhancedArabicChatbot()
            
            # Test the query
            print(f"\n[NOTE] Query: {args.query}")
            print("-" * 40)
            
            try:
                # Process the query
                history = []
                result_history, status = await app.process_query(args.query, history)
                
                # Display results
                if result_history and len(result_history) >= 2:
                    response = result_history[-1]['content']
                    print(f"Status: {status}")
                    print(f"Response:\n{response}")
                else:
                    print(f"Status: {status}")
                    print("No response generated")
                    
            except Exception as e:
                print(f"[MISC] Error processing query: {e}")
                import traceback
                traceback.print_exc()
            
            print("\n" + "=" * 70)
            print("[MISC] Query test complete!")
        
        asyncio.run(test_query())
        sys.exit(0)
    
    else:
        # Normal operation with selected chunking strategy
        if args.chunking != "fixed":
            print(f"\n[TOOL] Using {args.chunking} chunking strategy")
            print("This provides better context preservation for Arabic documents")
        main()