import gradio as gr import torch from diffusers import DiffusionPipeline # Define a dictionary of available models models = { "QuantStack/Wan2.2-Fun-A14B-InP-GGUF" # Add more models as needed } # Load models into a dict for quick access loaded_pipelines = {} def load_model(model_id): if model_id not in loaded_pipelines: pipe = DiffusionPipeline.from_pretrained(model_id) pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu") loaded_pipelines[model_id] = pipe return loaded_pipelines[model_id] def generate_video(model_name, prompt): pipe = load_model(models[model_name]) # Call your model's video generation method result = pipe(prompt) # Adjust based on actual output (assuming it returns a video) video = result.videos[0] # or result['videos'][0] video_path = "output.mp4" video.save(video_path) return video_path with gr.Blocks() as demo: gr.Markdown("# Video Generation from Text") with gr.Row(): model_choice = gr.Dropdown(choices=list(models.keys()), label="Select Model") prompt_input = gr.Textbox(label="Enter your prompt", lines=2, placeholder="A spaceship in space, neon colors") generate_button = gr.Button("Generate Video") video_output = gr.Video(label="Generated Video") generate_button.click( fn=generate_video, inputs=[model_choice, prompt_input], outputs=video_output ) demo.launch()