Spaces:
Sleeping
Sleeping
Update Gradio app with multiple files
Browse files- app.py +64 -21
- config.py +8 -1
- models.py +43 -17
- requirements.txt +4 -2
- utils.py +21 -2
app.py
CHANGED
|
@@ -1,42 +1,85 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
return response
|
| 16 |
|
| 17 |
-
with gr.Blocks(title="LLM Chatbot") as demo:
|
| 18 |
-
gr.Markdown("# 🤖 LLM Chatbot")
|
| 19 |
-
gr.Markdown("*Powered by
|
| 20 |
gr.Markdown("[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
msg = gr.Textbox(placeholder="Type your message here...", label="Message")
|
| 24 |
|
| 25 |
with gr.Row():
|
| 26 |
-
submit_btn = gr.Button("Send")
|
| 27 |
clear_btn = gr.ClearButton([msg, chatbot])
|
|
|
|
| 28 |
|
| 29 |
-
def respond(message, chat_history):
|
| 30 |
if not message.strip():
|
| 31 |
return "", chat_history
|
| 32 |
|
| 33 |
-
response =
|
| 34 |
chat_history.append({"role": "user", "content": message})
|
| 35 |
chat_history.append({"role": "assistant", "content": response})
|
| 36 |
return "", chat_history
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
if __name__ == "__main__":
|
| 42 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from models import load_model, chat_with_model
|
| 4 |
+
from config import AVAILABLE_MODELS, DEFAULT_MODEL
|
| 5 |
+
from utils import format_conversation, save_chat_history, load_chat_history
|
| 6 |
|
| 7 |
+
# Global variable for current model
|
| 8 |
+
current_model = None
|
| 9 |
+
|
| 10 |
+
def switch_model(model_name):
|
| 11 |
+
global current_model
|
| 12 |
+
current_model = load_model(model_name)
|
| 13 |
+
return f"Switched to {model_name}"
|
| 14 |
+
|
| 15 |
+
@spaces.GPU(duration=120) # GPU acceleration for inference
|
| 16 |
+
def generate_response(message, history, model_name, streaming=False):
|
| 17 |
+
global current_model
|
| 18 |
+
if current_model is None or current_model['name'] != model_name:
|
| 19 |
+
current_model = load_model(model_name)
|
| 20 |
+
|
| 21 |
+
conversation = format_conversation(message, history)
|
| 22 |
+
response = chat_with_model(current_model, conversation, streaming=streaming)
|
| 23 |
return response
|
| 24 |
|
| 25 |
+
with gr.Blocks(title="Advanced LLM Chatbot", theme=gr.themes.Soft()) as demo:
|
| 26 |
+
gr.Markdown("# 🤖 Advanced LLM Chatbot")
|
| 27 |
+
gr.Markdown("*Powered by Hugging Face models with model switching and streaming*")
|
| 28 |
gr.Markdown("[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
|
| 29 |
|
| 30 |
+
with gr.Row():
|
| 31 |
+
model_dropdown = gr.Dropdown(
|
| 32 |
+
choices=list(AVAILABLE_MODELS.keys()),
|
| 33 |
+
value=DEFAULT_MODEL,
|
| 34 |
+
label="Select Model",
|
| 35 |
+
info="Choose a chat model to use"
|
| 36 |
+
)
|
| 37 |
+
switch_btn = gr.Button("Switch Model")
|
| 38 |
+
status = gr.Textbox(label="Status", interactive=False, value=f"Current: {DEFAULT_MODEL}")
|
| 39 |
+
|
| 40 |
+
with gr.Row():
|
| 41 |
+
streaming_toggle = gr.Checkbox(label="Enable Streaming", value=False)
|
| 42 |
+
save_btn = gr.Button("Save Chat")
|
| 43 |
+
load_btn = gr.Button("Load Chat")
|
| 44 |
+
|
| 45 |
+
chatbot = gr.Chatbot(type="messages", height=400, show_copy_button=True)
|
| 46 |
msg = gr.Textbox(placeholder="Type your message here...", label="Message")
|
| 47 |
|
| 48 |
with gr.Row():
|
| 49 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 50 |
clear_btn = gr.ClearButton([msg, chatbot])
|
| 51 |
+
undo_btn = gr.Button("Undo Last")
|
| 52 |
|
| 53 |
+
def respond(message, chat_history, model_name, streaming):
|
| 54 |
if not message.strip():
|
| 55 |
return "", chat_history
|
| 56 |
|
| 57 |
+
response = generate_response(message, chat_history, model_name, streaming)
|
| 58 |
chat_history.append({"role": "user", "content": message})
|
| 59 |
chat_history.append({"role": "assistant", "content": response})
|
| 60 |
return "", chat_history
|
| 61 |
|
| 62 |
+
def undo_last(history):
|
| 63 |
+
if len(history) >= 2:
|
| 64 |
+
return history[:-2] # Remove last user and assistant message
|
| 65 |
+
return history
|
| 66 |
+
|
| 67 |
+
def save_history(history):
|
| 68 |
+
save_chat_history(history)
|
| 69 |
+
return "Chat saved!"
|
| 70 |
+
|
| 71 |
+
def load_history():
|
| 72 |
+
return load_chat_history()
|
| 73 |
+
|
| 74 |
+
model_dropdown.change(switch_model, model_dropdown, status)
|
| 75 |
+
switch_btn.click(switch_model, model_dropdown, status)
|
| 76 |
+
|
| 77 |
+
msg.submit(respond, [msg, chatbot, model_dropdown, streaming_toggle], [msg, chatbot])
|
| 78 |
+
submit_btn.click(respond, [msg, chatbot, model_dropdown, streaming_toggle], [msg, chatbot])
|
| 79 |
+
|
| 80 |
+
undo_btn.click(undo_last, chatbot, chatbot)
|
| 81 |
+
save_btn.click(save_history, chatbot, status)
|
| 82 |
+
load_btn.click(load_history, None, chatbot)
|
| 83 |
|
| 84 |
if __name__ == "__main__":
|
| 85 |
demo.launch()
|
config.py
CHANGED
|
@@ -1,2 +1,9 @@
|
|
| 1 |
# Configuration for the chatbot
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Configuration for the chatbot
|
| 2 |
+
AVAILABLE_MODELS = {
|
| 3 |
+
"microsoft/DialoGPT-medium": "DialoGPT Medium (Conversational)",
|
| 4 |
+
"microsoft/DialoGPT-large": "DialoGPT Large (Advanced)",
|
| 5 |
+
"facebook/blenderbot-400M-distill": "BlenderBot 400M (Conversational)",
|
| 6 |
+
"microsoft/GODEL-v1_1-base-seq2seq": "GODEL Base (Goal-oriented)"
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
+
DEFAULT_MODEL = "microsoft/DialoGPT-medium"
|
models.py
CHANGED
|
@@ -1,22 +1,48 @@
|
|
| 1 |
-
from transformers import pipeline
|
| 2 |
-
|
| 3 |
-
from config import MODEL_NAME
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
|
| 8 |
-
def
|
| 9 |
-
|
| 10 |
-
if
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
def chat_with_model(conversation):
|
| 15 |
-
"""
|
| 16 |
try:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
except Exception as e:
|
| 22 |
-
return f"Error: {str(e)}"
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
|
|
|
| 3 |
|
| 4 |
+
# Cache for loaded models
|
| 5 |
+
model_cache = {}
|
| 6 |
|
| 7 |
+
def load_model(model_name):
|
| 8 |
+
"""Load and cache a Hugging Face model."""
|
| 9 |
+
if model_name not in model_cache:
|
| 10 |
+
try:
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
model_name,
|
| 14 |
+
torch_dtype=torch.float16, # Use float16 for efficiency
|
| 15 |
+
device_map="auto" # Auto-detect GPU
|
| 16 |
+
)
|
| 17 |
+
model_cache[model_name] = {
|
| 18 |
+
'name': model_name,
|
| 19 |
+
'tokenizer': tokenizer,
|
| 20 |
+
'model': model
|
| 21 |
+
}
|
| 22 |
+
except Exception as e:
|
| 23 |
+
raise ValueError(f"Failed to load model {model_name}: {str(e)}")
|
| 24 |
+
|
| 25 |
+
return model_cache[model_name]
|
| 26 |
|
| 27 |
+
def chat_with_model(model_data, conversation, streaming=False):
|
| 28 |
+
"""Generate response using the loaded model."""
|
| 29 |
try:
|
| 30 |
+
tokenizer = model_data['tokenizer']
|
| 31 |
+
model = model_data['model']
|
| 32 |
+
|
| 33 |
+
inputs = tokenizer(conversation, return_tensors="pt").to(model.device)
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
outputs = model.generate(
|
| 37 |
+
**inputs,
|
| 38 |
+
max_length=inputs['input_ids'].shape[1] + 100, # Generate up to 100 new tokens
|
| 39 |
+
do_sample=True,
|
| 40 |
+
temperature=0.7,
|
| 41 |
+
top_p=0.9,
|
| 42 |
+
pad_token_id=tokenizer.eos_token_id
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 46 |
+
return response.strip()
|
| 47 |
except Exception as e:
|
| 48 |
+
return f"Error generating response: {str(e)}"
|
requirements.txt
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
-
transformers>=4.
|
| 3 |
torch>=2.0.0
|
| 4 |
-
accelerate>=0.20.0
|
|
|
|
|
|
|
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
+
transformers>=4.21.0
|
| 3 |
torch>=2.0.0
|
| 4 |
+
accelerate>=0.20.0
|
| 5 |
+
spaces>=0.25.0 # For GPU acceleration on Spaces
|
| 6 |
+
sentencepiece>=0.1.99 # Required for some tokenizers
|
utils.py
CHANGED
|
@@ -1,3 +1,22 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
"""Format conversation for the model."""
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def format_conversation(message, history):
|
| 5 |
"""Format conversation for the model."""
|
| 6 |
+
conversation = []
|
| 7 |
+
for msg in history:
|
| 8 |
+
conversation.append(f"{msg['role']}: {msg['content']}")
|
| 9 |
+
conversation.append(f"user: {message}")
|
| 10 |
+
return "\n".join(conversation)
|
| 11 |
+
|
| 12 |
+
def save_chat_history(history):
|
| 13 |
+
"""Save chat history to a file."""
|
| 14 |
+
with open("chat_history.json", "w") as f:
|
| 15 |
+
json.dump(history, f)
|
| 16 |
+
|
| 17 |
+
def load_chat_history():
|
| 18 |
+
"""Load chat history from a file."""
|
| 19 |
+
if os.path.exists("chat_history.json"):
|
| 20 |
+
with open("chat_history.json", "r") as f:
|
| 21 |
+
return json.load(f)
|
| 22 |
+
return []
|