File size: 56,560 Bytes
be751d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_flux2.py
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import inspect
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (TimestepEmbedding, Timesteps,
                                         apply_rotary_emb,
                                         get_1d_rotary_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_npu_available,
                             is_torch_version, logging, scale_lora_layers,
                             unscale_lora_layers)

from ..dist import (Flux2MultiGPUsAttnProcessor2_0, get_sequence_parallel_rank,
                    get_sequence_parallel_world_size, get_sp_group)
from .attention_utils import attention

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def _get_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None):
    query = attn.to_q(hidden_states)
    key = attn.to_k(hidden_states)
    value = attn.to_v(hidden_states)

    encoder_query = encoder_key = encoder_value = None
    if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
        encoder_query = attn.add_q_proj(encoder_hidden_states)
        encoder_key = attn.add_k_proj(encoder_hidden_states)
        encoder_value = attn.add_v_proj(encoder_hidden_states)

    return query, key, value, encoder_query, encoder_key, encoder_value


def _get_qkv_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None):
    return _get_projections(attn, hidden_states, encoder_hidden_states)


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
    use_real: bool = True,
    use_real_unbind_dim: int = -1,
    sequence_dim: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        if sequence_dim == 2:
            cos = cos[None, None, :, :]
            sin = sin[None, None, :, :]
        elif sequence_dim == 1:
            cos = cos[None, :, None, :]
            sin = sin[None, :, None, :]
        else:
            raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.")

        cos, sin = cos.to(x.device), sin.to(x.device)

        if use_real_unbind_dim == -1:
            # Used for flux, cogvideox, hunyuan-dit
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, H, S, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
            # Used for Stable Audio, OmniGen, CogView4 and Cosmos
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, H, S, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out
    else:
        # used for lumina
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)


class Flux2SwiGLU(nn.Module):
    """
    Flux 2 uses a SwiGLU-style activation in the transformer feedforward sub-blocks, but with the linear projection
    layer fused into the first linear layer of the FF sub-block. Thus, this module has no trainable parameters.
    """

    def __init__(self):
        super().__init__()
        self.gate_fn = nn.SiLU()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x1, x2 = x.chunk(2, dim=-1)
        x = self.gate_fn(x1) * x2
        return x


class Flux2FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: float = 3.0,
        inner_dim: Optional[int] = None,
        bias: bool = False,
    ):
        super().__init__()
        if inner_dim is None:
            inner_dim = int(dim * mult)
        dim_out = dim_out or dim

        # Flux2SwiGLU will reduce the dimension by half
        self.linear_in = nn.Linear(dim, inner_dim * 2, bias=bias)
        self.act_fn = Flux2SwiGLU()
        self.linear_out = nn.Linear(inner_dim, dim_out, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear_in(x)
        x = self.act_fn(x)
        x = self.linear_out(x)
        return x


class Flux2AttnProcessor:
    _attention_backend = None
    _parallel_config = None

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.")

    def __call__(
        self,
        attn: Union["Flux2Attention", "Flux2ParallelSelfAttention"],
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        text_seq_len: int = None,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Unified processor for both Flux2Attention and Flux2ParallelSelfAttention.
        
        Args:
            attn: Attention module (either Flux2Attention or Flux2ParallelSelfAttention)
            hidden_states: Input hidden states
            encoder_hidden_states: Optional encoder hidden states (only for Flux2Attention)
            attention_mask: Optional attention mask
            image_rotary_emb: Optional rotary embeddings
            
        Returns:
            For Flux2Attention with encoder_hidden_states: (hidden_states, encoder_hidden_states)
            For Flux2Attention without encoder_hidden_states: hidden_states
            For Flux2ParallelSelfAttention: hidden_states
        """
        # Determine which type of attention we're processing
        is_parallel_self_attn = hasattr(attn, 'to_qkv_mlp_proj') and attn.to_qkv_mlp_proj is not None

        if is_parallel_self_attn:
            # ============================================
            # Parallel Self-Attention Path (with MLP)
            # ============================================
            # Parallel in (QKV + MLP in) projection
            hidden_states = attn.to_qkv_mlp_proj(hidden_states)
            qkv, mlp_hidden_states = torch.split(
                hidden_states, [3 * attn.inner_dim, attn.mlp_hidden_dim * attn.mlp_mult_factor], dim=-1
            )

            # Handle the attention logic
            query, key, value = qkv.chunk(3, dim=-1)
            
        else:
            # ============================================
            # Standard Attention Path (possibly with encoder)
            # ============================================
            query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
                attn, hidden_states, encoder_hidden_states
            )

        # Common processing for query, key, value
        query = query.unflatten(-1, (attn.heads, -1))
        key = key.unflatten(-1, (attn.heads, -1))
        value = value.unflatten(-1, (attn.heads, -1))

        query = attn.norm_q(query)
        key = attn.norm_k(key)

        # Handle encoder projections (only for standard attention)
        if not is_parallel_self_attn and attn.added_kv_proj_dim is not None:
            encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
            encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
            encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))

            encoder_query = attn.norm_added_q(encoder_query)
            encoder_key = attn.norm_added_k(encoder_key)

            query = torch.cat([encoder_query, query], dim=1)
            key = torch.cat([encoder_key, key], dim=1)
            value = torch.cat([encoder_value, value], dim=1)

        # Apply rotary embeddings
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
            key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)

        # Perform attention
        hidden_states = attention(
            query, key, value, attn_mask=attention_mask,
        )
        hidden_states = hidden_states.flatten(2, 3)
        hidden_states = hidden_states.to(query.dtype)

        if is_parallel_self_attn:
            # ============================================
            # Parallel Self-Attention Output Path
            # ============================================
            # Handle the feedforward (FF) logic
            mlp_hidden_states = attn.mlp_act_fn(mlp_hidden_states)

            # Concatenate and parallel output projection
            hidden_states = torch.cat([hidden_states, mlp_hidden_states], dim=-1)
            hidden_states = attn.to_out(hidden_states)
            
            return hidden_states
            
        else:
            # ============================================
            # Standard Attention Output Path
            # ============================================
            # Split encoder and latent hidden states if encoder was used
            if encoder_hidden_states is not None:
                encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
                    [encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
                )
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            # Project output
            hidden_states = attn.to_out[0](hidden_states)
            hidden_states = attn.to_out[1](hidden_states)

            if encoder_hidden_states is not None:
                return hidden_states, encoder_hidden_states
            else:
                return hidden_states


class Flux2Attention(torch.nn.Module):
    _default_processor_cls = Flux2AttnProcessor
    _available_processors = [Flux2AttnProcessor]

    def __init__(
        self,
        query_dim: int,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias: bool = False,
        added_kv_proj_dim: Optional[int] = None,
        added_proj_bias: Optional[bool] = True,
        out_bias: bool = True,
        eps: float = 1e-5,
        out_dim: int = None,
        elementwise_affine: bool = True,
        processor=None,
    ):
        super().__init__()

        self.head_dim = dim_head
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.query_dim = query_dim
        self.out_dim = out_dim if out_dim is not None else query_dim
        self.heads = out_dim // dim_head if out_dim is not None else heads

        self.use_bias = bias
        self.dropout = dropout

        self.added_kv_proj_dim = added_kv_proj_dim
        self.added_proj_bias = added_proj_bias

        self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
        self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
        self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)

        # QK Norm
        self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
        self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)

        self.to_out = torch.nn.ModuleList([])
        self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
        self.to_out.append(torch.nn.Dropout(dropout))

        if added_kv_proj_dim is not None:
            self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
            self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
            self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
            self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
            self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
            self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias)

        if processor is None:
            processor = self._default_processor_cls()
        self.set_processor(processor)

    def set_processor(self, processor: AttentionProcessor) -> None:
        """
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
        """
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
        if not return_deprecated_lora:
            return self.processor

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
        unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters]
        if len(unused_kwargs) > 0:
            logger.warning(
                f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
        return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)


class Flux2ParallelSelfAttention(torch.nn.Module):
    """
    Flux 2 parallel self-attention for the Flux 2 single-stream transformer blocks.

    This implements a parallel transformer block, where the attention QKV projections are fused to the feedforward (FF)
    input projections, and the attention output projections are fused to the FF output projections. See the [ViT-22B
    paper](https://arxiv.org/abs/2302.05442) for a visual depiction of this type of transformer block.
    """

    _default_processor_cls = Flux2AttnProcessor
    _available_processors = [Flux2AttnProcessor]
    # Does not support QKV fusion as the QKV projections are always fused
    _supports_qkv_fusion = False

    def __init__(
        self,
        query_dim: int,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias: bool = False,
        out_bias: bool = True,
        eps: float = 1e-5,
        out_dim: int = None,
        elementwise_affine: bool = True,
        mlp_ratio: float = 4.0,
        mlp_mult_factor: int = 2,
        processor=None,
    ):
        super().__init__()

        self.head_dim = dim_head
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.query_dim = query_dim
        self.out_dim = out_dim if out_dim is not None else query_dim
        self.heads = out_dim // dim_head if out_dim is not None else heads

        self.use_bias = bias
        self.dropout = dropout

        self.mlp_ratio = mlp_ratio
        self.mlp_hidden_dim = int(query_dim * self.mlp_ratio)
        self.mlp_mult_factor = mlp_mult_factor

        # Fused QKV projections + MLP input projection
        self.to_qkv_mlp_proj = torch.nn.Linear(
            self.query_dim, self.inner_dim * 3 + self.mlp_hidden_dim * self.mlp_mult_factor, bias=bias
        )
        self.mlp_act_fn = Flux2SwiGLU()

        # QK Norm
        self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
        self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)

        # Fused attention output projection + MLP output projection
        self.to_out = torch.nn.Linear(self.inner_dim + self.mlp_hidden_dim, self.out_dim, bias=out_bias)

        if processor is None:
            processor = self._default_processor_cls()
        self.set_processor(processor)

    def set_processor(self, processor: AttentionProcessor) -> None:
        """
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
        """
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
        if not return_deprecated_lora:
            return self.processor

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
        unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters]
        if len(unused_kwargs) > 0:
            logger.warning(
                f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
        return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)


class Flux2SingleTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_ratio: float = 3.0,
        eps: float = 1e-6,
        bias: bool = False,
    ):
        super().__init__()

        self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)

        # Note that the MLP in/out linear layers are fused with the attention QKV/out projections, respectively; this
        # is often called a "parallel" transformer block. See the [ViT-22B paper](https://arxiv.org/abs/2302.05442)
        # for a visual depiction of this type of transformer block.
        self.attn = Flux2ParallelSelfAttention(
            query_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=bias,
            out_bias=bias,
            eps=eps,
            mlp_ratio=mlp_ratio,
            mlp_mult_factor=2,
            processor=Flux2AttnProcessor(),
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor],
        temb_mod_params: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # If encoder_hidden_states is None, hidden_states is assumed to have encoder_hidden_states already
        # concatenated
        if encoder_hidden_states is not None:
            text_seq_len = encoder_hidden_states.shape[1]
            hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        mod_shift, mod_scale, mod_gate = temb_mod_params

        norm_hidden_states = self.norm(hidden_states)
        norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift

        joint_attention_kwargs = joint_attention_kwargs or {}
        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            image_rotary_emb=image_rotary_emb,
            text_seq_len=text_seq_len,
            **joint_attention_kwargs,
        )

        hidden_states = hidden_states + mod_gate * attn_output
        if hidden_states.dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:]
        return encoder_hidden_states, hidden_states


class Flux2TransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_ratio: float = 3.0,
        eps: float = 1e-6,
        bias: bool = False,
    ):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.norm1_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)

        self.attn = Flux2Attention(
            query_dim=dim,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=bias,
            added_proj_bias=bias,
            out_bias=bias,
            eps=eps,
            processor=Flux2AttnProcessor(),
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.ff = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias)

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.ff_context = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb_mod_params_img: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
        temb_mod_params_txt: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        joint_attention_kwargs = joint_attention_kwargs or {}

        # Modulation parameters shape: [1, 1, self.dim]
        (shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
        (c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt

        # Img stream
        norm_hidden_states = self.norm1(hidden_states)
        norm_hidden_states = (1 + scale_msa) * norm_hidden_states + shift_msa

        # Conditioning txt stream
        norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
        norm_encoder_hidden_states = (1 + c_scale_msa) * norm_encoder_hidden_states + c_shift_msa

        # Attention on concatenated img + txt stream
        attention_outputs = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            **joint_attention_kwargs,
        )

        attn_output, context_attn_output = attention_outputs

        # Process attention outputs for the image stream (`hidden_states`).
        attn_output = gate_msa * attn_output
        hidden_states = hidden_states + attn_output

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        ff_output = self.ff(norm_hidden_states)
        hidden_states = hidden_states + gate_mlp * ff_output

        # Process attention outputs for the text stream (`encoder_hidden_states`).
        context_attn_output = c_gate_msa * context_attn_output
        encoder_hidden_states = encoder_hidden_states + context_attn_output

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
        if encoder_hidden_states.dtype == torch.float16:
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

        return encoder_hidden_states, hidden_states


class Flux2PosEmbed(nn.Module):
    # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
    def __init__(self, theta: int, axes_dim: List[int]):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        # Expected ids shape: [S, len(self.axes_dim)]
        cos_out = []
        sin_out = []
        pos = ids.float()
        is_mps = ids.device.type == "mps"
        is_npu = ids.device.type == "npu"
        freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64
        # Unlike Flux 1, loop over len(self.axes_dim) rather than ids.shape[-1]
        for i in range(len(self.axes_dim)):
            cos, sin = get_1d_rotary_pos_embed(
                self.axes_dim[i],
                pos[..., i],
                theta=self.theta,
                repeat_interleave_real=True,
                use_real=True,
                freqs_dtype=freqs_dtype,
            )
            cos_out.append(cos)
            sin_out.append(sin)
        freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
        freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
        return freqs_cos, freqs_sin


class Flux2TimestepGuidanceEmbeddings(nn.Module):
    def __init__(self, in_channels: int = 256, embedding_dim: int = 6144, bias: bool = False):
        super().__init__()

        self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(
            in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
        )

        self.guidance_embedder = TimestepEmbedding(
            in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
        )

    def forward(self, timestep: torch.Tensor, guidance: torch.Tensor) -> torch.Tensor:
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(timestep.dtype))  # (N, D)

        guidance_proj = self.time_proj(guidance)
        guidance_emb = self.guidance_embedder(guidance_proj.to(guidance.dtype))  # (N, D)

        time_guidance_emb = timesteps_emb + guidance_emb

        return time_guidance_emb


class Flux2Modulation(nn.Module):
    def __init__(self, dim: int, mod_param_sets: int = 2, bias: bool = False):
        super().__init__()
        self.mod_param_sets = mod_param_sets

        self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
        self.act_fn = nn.SiLU()

    def forward(self, temb: torch.Tensor) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
        mod = self.act_fn(temb)
        mod = self.linear(mod)

        if mod.ndim == 2:
            mod = mod.unsqueeze(1)
        mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
        # Return tuple of 3-tuples of modulation params shift/scale/gate
        return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))


class Flux2Transformer2DModel(
    ModelMixin,
    ConfigMixin,
    FromOriginalModelMixin,
):
    """
    The Transformer model introduced in Flux 2.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Args:
        patch_size (`int`, defaults to `1`):
            Patch size to turn the input data into small patches.
        in_channels (`int`, defaults to `128`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `None`):
            The number of channels in the output. If not specified, it defaults to `in_channels`.
        num_layers (`int`, defaults to `8`):
            The number of layers of dual stream DiT blocks to use.
        num_single_layers (`int`, defaults to `48`):
            The number of layers of single stream DiT blocks to use.
        attention_head_dim (`int`, defaults to `128`):
            The number of dimensions to use for each attention head.
        num_attention_heads (`int`, defaults to `48`):
            The number of attention heads to use.
        joint_attention_dim (`int`, defaults to `15360`):
            The number of dimensions to use for the joint attention (embedding/channel dimension of
            `encoder_hidden_states`).
        pooled_projection_dim (`int`, defaults to `768`):
            The number of dimensions to use for the pooled projection.
        guidance_embeds (`bool`, defaults to `True`):
            Whether to use guidance embeddings for guidance-distilled variant of the model.
        axes_dims_rope (`Tuple[int]`, defaults to `(32, 32, 32, 32)`):
            The dimensions to use for the rotary positional embeddings.
    """

    _supports_gradient_checkpointing = True
    # _no_split_modules = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"]
    # _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
    # _repeated_blocks = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 128,
        out_channels: Optional[int] = None,
        num_layers: int = 8,
        num_single_layers: int = 48,
        attention_head_dim: int = 128,
        num_attention_heads: int = 48,
        joint_attention_dim: int = 15360,
        timestep_guidance_channels: int = 256,
        mlp_ratio: float = 3.0,
        axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32),
        rope_theta: int = 2000,
        eps: float = 1e-6,
    ):
        super().__init__()
        self.out_channels = out_channels or in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        # 1. Sinusoidal positional embedding for RoPE on image and text tokens
        self.pos_embed = Flux2PosEmbed(theta=rope_theta, axes_dim=axes_dims_rope)

        # 2. Combined timestep + guidance embedding
        self.time_guidance_embed = Flux2TimestepGuidanceEmbeddings(
            in_channels=timestep_guidance_channels, embedding_dim=self.inner_dim, bias=False
        )

        # 3. Modulation (double stream and single stream blocks share modulation parameters, resp.)
        # Two sets of shift/scale/gate modulation parameters for the double stream attn and FF sub-blocks
        self.double_stream_modulation_img = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False)
        self.double_stream_modulation_txt = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False)
        # Only one set of modulation parameters as the attn and FF sub-blocks are run in parallel for single stream
        self.single_stream_modulation = Flux2Modulation(self.inner_dim, mod_param_sets=1, bias=False)

        # 4. Input projections
        self.x_embedder = nn.Linear(in_channels, self.inner_dim, bias=False)
        self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim, bias=False)

        # 5. Double Stream Transformer Blocks
        self.transformer_blocks = nn.ModuleList(
            [
                Flux2TransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_ratio=mlp_ratio,
                    eps=eps,
                    bias=False,
                )
                for _ in range(num_layers)
            ]
        )

        # 6. Single Stream Transformer Blocks
        self.single_transformer_blocks = nn.ModuleList(
            [
                Flux2SingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_ratio=mlp_ratio,
                    eps=eps,
                    bias=False,
                )
                for _ in range(num_single_layers)
            ]
        )

        # 7. Output layers
        self.norm_out = AdaLayerNormContinuous(
            self.inner_dim, self.inner_dim, elementwise_affine=False, eps=eps, bias=False
        )
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)

        self.gradient_checkpointing = False

        self.sp_world_size = 1
        self.sp_world_rank = 0

    def _set_gradient_checkpointing(self, *args, **kwargs):
        if "value" in kwargs:
            self.gradient_checkpointing = kwargs["value"]
        elif "enable" in kwargs:
            self.gradient_checkpointing = kwargs["enable"]
        else:
            raise ValueError("Invalid set gradient checkpointing")

    def enable_multi_gpus_inference(self,):
        self.sp_world_size = get_sequence_parallel_world_size()
        self.sp_world_rank = get_sequence_parallel_rank()
        self.all_gather = get_sp_group().all_gather
        self.set_attn_processor(Flux2MultiGPUsAttnProcessor2_0())

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        # 0. Handle input arguments
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        num_txt_tokens = encoder_hidden_states.shape[1]

        # 1. Calculate timestep embedding and modulation parameters
        timestep = timestep.to(hidden_states.dtype) * 1000
        guidance = guidance.to(hidden_states.dtype) * 1000

        temb = self.time_guidance_embed(timestep, guidance)

        double_stream_mod_img = self.double_stream_modulation_img(temb)
        double_stream_mod_txt = self.double_stream_modulation_txt(temb)
        single_stream_mod = self.single_stream_modulation(temb)[0]

        # 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
        hidden_states = self.x_embedder(hidden_states)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        # 3. Calculate RoPE embeddings from image and text tokens
        # NOTE: the below logic means that we can't support batched inference with images of different resolutions or
        # text prompts of differents lengths. Is this a use case we want to support?
        if img_ids.ndim == 3:
            img_ids = img_ids[0]
        if txt_ids.ndim == 3:
            txt_ids = txt_ids[0]

        if is_torch_npu_available():
            freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu())
            image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu())
            freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu())
            text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu())
        else:
            image_rotary_emb = self.pos_embed(img_ids)
            text_rotary_emb = self.pos_embed(txt_ids)
        concat_rotary_emb = (
            torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0),
            torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0),
        )

        # Context Parallel
        if self.sp_world_size > 1:
            hidden_states = torch.chunk(hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank]
            if concat_rotary_emb is not None:
                txt_rotary_emb = (
                    concat_rotary_emb[0][:encoder_hidden_states.shape[1]], 
                    concat_rotary_emb[1][:encoder_hidden_states.shape[1]]
                )
                concat_rotary_emb = (
                    torch.chunk(concat_rotary_emb[0][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
                    torch.chunk(concat_rotary_emb[1][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
                )
                concat_rotary_emb = [torch.cat([_txt_rotary_emb, _image_rotary_emb], dim=0) \
                    for _txt_rotary_emb, _image_rotary_emb in zip(txt_rotary_emb, concat_rotary_emb)]

        # 4. Double Stream Transformer Blocks
        for index_block, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    double_stream_mod_img,
                    double_stream_mod_txt,
                    concat_rotary_emb,
                    joint_attention_kwargs,
                    **ckpt_kwargs,
                )
            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb_mod_params_img=double_stream_mod_img,
                    temb_mod_params_txt=double_stream_mod_txt,
                    image_rotary_emb=concat_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

        # 5. Single Stream Transformer Blocks
        for index_block, block in enumerate(self.single_transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    single_stream_mod,
                    concat_rotary_emb,
                    joint_attention_kwargs,
                    **ckpt_kwargs,
                )
            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb_mod_params=single_stream_mod,
                    image_rotary_emb=concat_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

        # 6. Output layers
        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if self.sp_world_size > 1:
            output = self.all_gather(output, dim=1)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

    @classmethod
    def from_pretrained(
        cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={},
        low_cpu_mem_usage=False, torch_dtype=torch.bfloat16
    ):
        if subfolder is not None:
            pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
        print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")

        config_file = os.path.join(pretrained_model_path, 'config.json')
        if not os.path.isfile(config_file):
            raise RuntimeError(f"{config_file} does not exist")
        with open(config_file, "r") as f:
            config = json.load(f)

        from diffusers.utils import WEIGHTS_NAME
        model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
        model_file_safetensors = model_file.replace(".bin", ".safetensors")

        if "dict_mapping" in transformer_additional_kwargs.keys():
            for key in transformer_additional_kwargs["dict_mapping"]:
                transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key]

        if low_cpu_mem_usage:
            try:
                import re

                from diffusers import __version__ as diffusers_version
                if diffusers_version >= "0.33.0":
                    from diffusers.models.model_loading_utils import \
                        load_model_dict_into_meta
                else:
                    from diffusers.models.modeling_utils import \
                        load_model_dict_into_meta
                from diffusers.utils import is_accelerate_available
                if is_accelerate_available():
                    import accelerate
                
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **transformer_additional_kwargs)

                param_device = "cpu"
                if os.path.exists(model_file):
                    state_dict = torch.load(model_file, map_location="cpu")
                elif os.path.exists(model_file_safetensors):
                    from safetensors.torch import load_file, safe_open
                    state_dict = load_file(model_file_safetensors)
                else:
                    from safetensors.torch import load_file, safe_open
                    model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
                    state_dict = {}
                    print(model_files_safetensors)
                    for _model_file_safetensors in model_files_safetensors:
                        _state_dict = load_file(_model_file_safetensors)
                        for key in _state_dict:
                            state_dict[key] = _state_dict[key]

                filtered_state_dict = {}
                for key in state_dict:
                    if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size():
                        filtered_state_dict[key] = state_dict[key]
                    else:
                        print(f"Skipping key '{key}' due to size mismatch or absence in model.")
                        
                model_keys = set(model.state_dict().keys())
                loaded_keys = set(filtered_state_dict.keys())
                missing_keys = model_keys - loaded_keys

                def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None):
                    initialized_dict = {}
                    
                    with torch.no_grad():
                        for key in missing_keys:
                            param_shape = model_state_dict[key].shape
                            param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype
                            if 'weight' in key:
                                if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']):
                                    initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
                                elif 'embedding' in key or 'embed' in key:
                                    initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
                                elif 'head' in key or 'output' in key or 'proj_out' in key:
                                    initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                                elif len(param_shape) >= 2:
                                    initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype)
                                    nn.init.xavier_uniform_(initialized_dict[key])
                                else:
                                    initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
                            elif 'bias' in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                            elif 'running_mean' in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                            elif 'running_var' in key:
                                initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
                            elif 'num_batches_tracked' in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long)
                            else:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                            
                    return initialized_dict

                if missing_keys:
                    print(f"Missing keys will be initialized: {sorted(missing_keys)}")
                    initialized_params = initialize_missing_parameters(
                        missing_keys, 
                        model.state_dict(), 
                        torch_dtype
                    )
                    filtered_state_dict.update(initialized_params)

                if diffusers_version >= "0.33.0":
                    # Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit:
                    # https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785.
                    load_model_dict_into_meta(
                        model,
                        filtered_state_dict,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_path,
                    )
                else:
                    model._convert_deprecated_attention_blocks(filtered_state_dict)
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        filtered_state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_path,
                    )

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        print(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )
                
                return model
            except Exception as e:
                print(
                    f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead."
                )
        
        model = cls.from_config(config, **transformer_additional_kwargs)
        if os.path.exists(model_file):
            state_dict = torch.load(model_file, map_location="cpu")
        elif os.path.exists(model_file_safetensors):
            from safetensors.torch import load_file, safe_open
            state_dict = load_file(model_file_safetensors)
        else:
            from safetensors.torch import load_file, safe_open
            model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
            state_dict = {}
            for _model_file_safetensors in model_files_safetensors:
                _state_dict = load_file(_model_file_safetensors)
                for key in _state_dict:
                    state_dict[key] = _state_dict[key]
        
        tmp_state_dict = {} 
        for key in state_dict:
            if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
                tmp_state_dict[key] = state_dict[key]
            else:
                print(key, "Size don't match, skip")
                
        state_dict = tmp_state_dict

        m, u = model.load_state_dict(state_dict, strict=False)
        print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
        print(m)
        
        params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()]
        print(f"### All Parameters: {sum(params) / 1e6} M")

        params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
        print(f"### attn1 Parameters: {sum(params) / 1e6} M")
        
        model = model.to(torch_dtype)
        return model