File size: 38,108 Bytes
be751d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
# Modified from https://github.com/Wan-Video/Wan2.2/blob/main/wan/modules/s2v/model_s2v.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.

import math
import types
from copy import deepcopy
from typing import Any, Dict

import torch
import torch.cuda.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import register_to_config
from diffusers.utils import is_torch_version
from einops import rearrange

from ..dist import (get_sequence_parallel_rank,
                    get_sequence_parallel_world_size, get_sp_group,
                    usp_attn_s2v_forward)
from .attention_utils import attention
from .wan_audio_injector import (AudioInjector_WAN, CausalAudioEncoder,
                                 FramePackMotioner, MotionerTransformers,
                                 rope_precompute)
from .wan_transformer3d import (Wan2_2Transformer3DModel, WanAttentionBlock,
                                WanLayerNorm, WanSelfAttention,
                                sinusoidal_embedding_1d)
from ..utils import cfg_skip


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def torch_dfs(model: nn.Module, parent_name='root'):
    module_names, modules = [], []
    current_name = parent_name if parent_name else 'root'
    module_names.append(current_name)
    modules.append(model)

    for name, child in model.named_children():
        if parent_name:
            child_name = f'{parent_name}.{name}'
        else:
            child_name = name
        child_modules, child_names = torch_dfs(child, child_name)
        module_names += child_names
        modules += child_modules
    return modules, module_names


@amp.autocast(enabled=False)
@torch.compiler.disable()
def s2v_rope_apply(x, grid_sizes, freqs, start=None):
    n, c = x.size(2), x.size(3) // 2
    # loop over samples
    output = []
    for i, _ in enumerate(x):
        s = x.size(1)
        x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(s, n, -1, 2))
        freqs_i = freqs[i, :s]
        # apply rotary embedding
        x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
        x_i = torch.cat([x_i, x[i, s:]])
        # append to collection
        output.append(x_i)
    return torch.stack(output).float()


def s2v_rope_apply_qk(q, k, grid_sizes, freqs):
    q = s2v_rope_apply(q, grid_sizes, freqs)
    k = s2v_rope_apply(k, grid_sizes, freqs)
    return q, k


class WanS2VSelfAttention(WanSelfAttention):

    def forward(self, x, seq_lens, grid_sizes, freqs, dtype=torch.bfloat16, t=0):
        """
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            seq_lens(Tensor): Shape [B]
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim

        # query, key, value function
        def qkv_fn(x):
            q = self.norm_q(self.q(x)).view(b, s, n, d)
            k = self.norm_k(self.k(x)).view(b, s, n, d)
            v = self.v(x).view(b, s, n, d)
            return q, k, v

        q, k, v = qkv_fn(x)

        q, k = s2v_rope_apply_qk(q, k, grid_sizes, freqs)

        x = attention(
            q.to(dtype), 
            k.to(dtype), 
            v=v.to(dtype),
            k_lens=seq_lens,
            window_size=self.window_size)
        x = x.to(dtype)

        # output
        x = x.flatten(2)
        x = self.o(x)
        return x


class WanS2VAttentionBlock(WanAttentionBlock):

    def __init__(self,
                 cross_attn_type,
                 dim,
                 ffn_dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=False,
                 eps=1e-6):
        super().__init__(
            cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps
        )
        self.self_attn = WanS2VSelfAttention(dim, num_heads, window_size,qk_norm, eps)

    def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens, dtype=torch.bfloat16, t=0):
        # e
        seg_idx = e[1].item()
        seg_idx = min(max(0, seg_idx), x.size(1))
        seg_idx = [0, seg_idx, x.size(1)]
        e = e[0]
        modulation = self.modulation.unsqueeze(2)
        e = (modulation + e).chunk(6, dim=1)
        e = [element.squeeze(1) for element in e]

        # norm
        norm_x = self.norm1(x).float()
        parts = []
        for i in range(2):
            parts.append(norm_x[:, seg_idx[i]:seg_idx[i + 1]] *
                         (1 + e[1][:, i:i + 1]) + e[0][:, i:i + 1])
        norm_x = torch.cat(parts, dim=1)
        # self-attention
        y = self.self_attn(norm_x, seq_lens, grid_sizes, freqs)
        with amp.autocast(dtype=torch.float32):
            z = []
            for i in range(2):
                z.append(y[:, seg_idx[i]:seg_idx[i + 1]] * e[2][:, i:i + 1])
            y = torch.cat(z, dim=1)
            x = x + y

        # cross-attention & ffn function
        def cross_attn_ffn(x, context, context_lens, e):
            x = x + self.cross_attn(self.norm3(x), context, context_lens)
            norm2_x = self.norm2(x).float()
            parts = []
            for i in range(2):
                parts.append(norm2_x[:, seg_idx[i]:seg_idx[i + 1]] *
                             (1 + e[4][:, i:i + 1]) + e[3][:, i:i + 1])
            norm2_x = torch.cat(parts, dim=1)
            y = self.ffn(norm2_x)
            with amp.autocast(dtype=torch.float32):
                z = []
                for i in range(2):
                    z.append(y[:, seg_idx[i]:seg_idx[i + 1]] * e[5][:, i:i + 1])
                y = torch.cat(z, dim=1)
                x = x + y
            return x

        x = cross_attn_ffn(x, context, context_lens, e)
        return x


class Wan2_2Transformer3DModel_S2V(Wan2_2Transformer3DModel):
    # ignore_for_config = [
    #     'args', 'kwargs', 'patch_size', 'cross_attn_norm', 'qk_norm',
    #     'text_dim', 'window_size'
    # ]
    # _no_split_modules = ['WanS2VAttentionBlock']

    @register_to_config
    def __init__(
        self,
        cond_dim=0,
        audio_dim=5120,
        num_audio_token=4,
        enable_adain=False,
        adain_mode="attn_norm",
        audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27],
        zero_init=False,
        zero_timestep=False,
        enable_motioner=True,
        add_last_motion=True,
        enable_tsm=False,
        trainable_token_pos_emb=False,
        motion_token_num=1024,
        enable_framepack=False,  # Mutually exclusive with enable_motioner
        framepack_drop_mode="drop",
        model_type='s2v',
        patch_size=(1, 2, 2),
        text_len=512,
        in_dim=16,
        dim=2048,
        ffn_dim=8192,
        freq_dim=256,
        text_dim=4096,
        out_dim=16,
        num_heads=16,
        num_layers=32,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=True,
        eps=1e-6,
        in_channels=16,
        hidden_size=2048,
        *args,
        **kwargs
    ):
        super().__init__(
            model_type=model_type,
            patch_size=patch_size,
            text_len=text_len,
            in_dim=in_dim,
            dim=dim,
            ffn_dim=ffn_dim,
            freq_dim=freq_dim,
            text_dim=text_dim,
            out_dim=out_dim,
            num_heads=num_heads,
            num_layers=num_layers,
            window_size=window_size,
            qk_norm=qk_norm,
            cross_attn_norm=cross_attn_norm,
            eps=eps,
            in_channels=in_channels,
            hidden_size=hidden_size
        )

        assert model_type == 's2v'
        self.enbale_adain = enable_adain
        # Whether to assign 0 value timestep to ref/motion
        self.adain_mode = adain_mode
        self.zero_timestep = zero_timestep  
        self.enable_motioner = enable_motioner
        self.add_last_motion = add_last_motion
        self.enable_framepack = enable_framepack

        # Replace blocks
        self.blocks = nn.ModuleList([
            WanS2VAttentionBlock("cross_attn", dim, ffn_dim, num_heads, window_size, qk_norm,
                                 cross_attn_norm, eps)
            for _ in range(num_layers)
        ])

        # init audio injector
        all_modules, all_modules_names = torch_dfs(self.blocks, parent_name="root.transformer_blocks")
        if cond_dim > 0:
            self.cond_encoder = nn.Conv3d(
                cond_dim,
                self.dim,
                kernel_size=self.patch_size,
                stride=self.patch_size)
        self.trainable_cond_mask = nn.Embedding(3, self.dim)
        self.casual_audio_encoder = CausalAudioEncoder(
            dim=audio_dim,
            out_dim=self.dim,
            num_token=num_audio_token,
            need_global=enable_adain)
        self.audio_injector = AudioInjector_WAN(
            all_modules,
            all_modules_names,
            dim=self.dim,
            num_heads=self.num_heads,
            inject_layer=audio_inject_layers,
            root_net=self,
            enable_adain=enable_adain,
            adain_dim=self.dim,
            need_adain_ont=adain_mode != "attn_norm",
        )

        if zero_init:
            self.zero_init_weights()

        # init motioner
        if enable_motioner and enable_framepack:
            raise ValueError(
                "enable_motioner and enable_framepack are mutually exclusive, please set one of them to False"
            )
        if enable_motioner:
            motioner_dim = 2048
            self.motioner = MotionerTransformers(
                patch_size=(2, 4, 4),
                dim=motioner_dim,
                ffn_dim=motioner_dim,
                freq_dim=256,
                out_dim=16,
                num_heads=16,
                num_layers=13,
                window_size=(-1, -1),
                qk_norm=True,
                cross_attn_norm=False,
                eps=1e-6,
                motion_token_num=motion_token_num,
                enable_tsm=enable_tsm,
                motion_stride=4,
                expand_ratio=2,
                trainable_token_pos_emb=trainable_token_pos_emb,
            )
            self.zip_motion_out = torch.nn.Sequential(
                WanLayerNorm(motioner_dim),
                zero_module(nn.Linear(motioner_dim, self.dim)))

            self.trainable_token_pos_emb = trainable_token_pos_emb
            if trainable_token_pos_emb:
                d = self.dim // self.num_heads
                x = torch.zeros([1, motion_token_num, self.num_heads, d])
                x[..., ::2] = 1

                gride_sizes = [[
                    torch.tensor([0, 0, 0]).unsqueeze(0).repeat(1, 1),
                    torch.tensor([
                        1, self.motioner.motion_side_len,
                        self.motioner.motion_side_len
                    ]).unsqueeze(0).repeat(1, 1),
                    torch.tensor([
                        1, self.motioner.motion_side_len,
                        self.motioner.motion_side_len
                    ]).unsqueeze(0).repeat(1, 1),
                ]]
                token_freqs = s2v_rope_apply(x, gride_sizes, self.freqs)
                token_freqs = token_freqs[0, :,
                                          0].reshape(motion_token_num, -1, 2)
                token_freqs = token_freqs * 0.01
                self.token_freqs = torch.nn.Parameter(token_freqs)

        if enable_framepack:
            self.frame_packer = FramePackMotioner(
                inner_dim=self.dim,
                num_heads=self.num_heads,
                zip_frame_buckets=[1, 2, 16],
                drop_mode=framepack_drop_mode)

    def enable_multi_gpus_inference(self,):
        self.sp_world_size = get_sequence_parallel_world_size()
        self.sp_world_rank = get_sequence_parallel_rank()
        self.all_gather = get_sp_group().all_gather
        for block in self.blocks:
            block.self_attn.forward = types.MethodType(
                usp_attn_s2v_forward, block.self_attn)

    def process_motion(self, motion_latents, drop_motion_frames=False):
        if drop_motion_frames or motion_latents[0].shape[1] == 0:
            return [], []
        self.lat_motion_frames = motion_latents[0].shape[1]
        mot = [self.patch_embedding(m.unsqueeze(0)) for m in motion_latents]
        batch_size = len(mot)

        mot_remb = []
        flattern_mot = []
        for bs in range(batch_size):
            height, width = mot[bs].shape[3], mot[bs].shape[4]
            flat_mot = mot[bs].flatten(2).transpose(1, 2).contiguous()
            motion_grid_sizes = [[
                torch.tensor([-self.lat_motion_frames, 0,
                              0]).unsqueeze(0).repeat(1, 1),
                torch.tensor([0, height, width]).unsqueeze(0).repeat(1, 1),
                torch.tensor([self.lat_motion_frames, height,
                              width]).unsqueeze(0).repeat(1, 1)
            ]]
            motion_rope_emb = rope_precompute(
                flat_mot.detach().view(1, flat_mot.shape[1], self.num_heads,
                                       self.dim // self.num_heads),
                motion_grid_sizes,
                self.freqs,
                start=None)
            mot_remb.append(motion_rope_emb)
            flattern_mot.append(flat_mot)
        return flattern_mot, mot_remb

    def process_motion_frame_pack(self,
                                  motion_latents,
                                  drop_motion_frames=False,
                                  add_last_motion=2):
        flattern_mot, mot_remb = self.frame_packer(motion_latents,
                                                   add_last_motion)
        if drop_motion_frames:
            return [m[:, :0] for m in flattern_mot
                   ], [m[:, :0] for m in mot_remb]
        else:
            return flattern_mot, mot_remb

    def process_motion_transformer_motioner(self,
                                            motion_latents,
                                            drop_motion_frames=False,
                                            add_last_motion=True):
        batch_size, height, width = len(
            motion_latents), motion_latents[0].shape[2] // self.patch_size[
                1], motion_latents[0].shape[3] // self.patch_size[2]

        freqs = self.freqs
        device = self.patch_embedding.weight.device
        if freqs.device != device:
            freqs = freqs.to(device)
        if self.trainable_token_pos_emb:
            with amp.autocast(dtype=torch.float64):
                token_freqs = self.token_freqs.to(torch.float64)
                token_freqs = token_freqs / token_freqs.norm(
                    dim=-1, keepdim=True)
                freqs = [freqs, torch.view_as_complex(token_freqs)]

        if not drop_motion_frames and add_last_motion:
            last_motion_latent = [u[:, -1:] for u in motion_latents]
            last_mot = [
                self.patch_embedding(m.unsqueeze(0)) for m in last_motion_latent
            ]
            last_mot = [m.flatten(2).transpose(1, 2) for m in last_mot]
            last_mot = torch.cat(last_mot)
            gride_sizes = [[
                torch.tensor([-1, 0, 0]).unsqueeze(0).repeat(batch_size, 1),
                torch.tensor([0, height,
                              width]).unsqueeze(0).repeat(batch_size, 1),
                torch.tensor([1, height,
                              width]).unsqueeze(0).repeat(batch_size, 1)
            ]]
        else:
            last_mot = torch.zeros([batch_size, 0, self.dim],
                                   device=motion_latents[0].device,
                                   dtype=motion_latents[0].dtype)
            gride_sizes = []

        zip_motion = self.motioner(motion_latents)
        zip_motion = self.zip_motion_out(zip_motion)
        if drop_motion_frames:
            zip_motion = zip_motion * 0.0
        zip_motion_grid_sizes = [[
            torch.tensor([-1, 0, 0]).unsqueeze(0).repeat(batch_size, 1),
            torch.tensor([
                0, self.motioner.motion_side_len, self.motioner.motion_side_len
            ]).unsqueeze(0).repeat(batch_size, 1),
            torch.tensor(
                [1 if not self.trainable_token_pos_emb else -1, height,
                 width]).unsqueeze(0).repeat(batch_size, 1),
        ]]

        mot = torch.cat([last_mot, zip_motion], dim=1)
        gride_sizes = gride_sizes + zip_motion_grid_sizes

        motion_rope_emb = rope_precompute(
            mot.detach().view(batch_size, mot.shape[1], self.num_heads,
                              self.dim // self.num_heads),
            gride_sizes,
            freqs,
            start=None)
        return [m.unsqueeze(0) for m in mot
               ], [r.unsqueeze(0) for r in motion_rope_emb]

    def inject_motion(self,
                      x,
                      seq_lens,
                      rope_embs,
                      mask_input,
                      motion_latents,
                      drop_motion_frames=False,
                      add_last_motion=True):
        # Inject the motion frames token to the hidden states
        if self.enable_motioner:
            mot, mot_remb = self.process_motion_transformer_motioner(
                motion_latents,
                drop_motion_frames=drop_motion_frames,
                add_last_motion=add_last_motion)
        elif self.enable_framepack:
            mot, mot_remb = self.process_motion_frame_pack(
                motion_latents,
                drop_motion_frames=drop_motion_frames,
                add_last_motion=add_last_motion)
        else:
            mot, mot_remb = self.process_motion(
                motion_latents, drop_motion_frames=drop_motion_frames)

        if len(mot) > 0:
            x = [torch.cat([u, m], dim=1) for u, m in zip(x, mot)]
            seq_lens = seq_lens + torch.tensor([r.size(1) for r in mot],
                                               dtype=torch.long)
            rope_embs = [
                torch.cat([u, m], dim=1) for u, m in zip(rope_embs, mot_remb)
            ]
            mask_input = [
                torch.cat([
                    m, 2 * torch.ones([1, u.shape[1] - m.shape[1]],
                                      device=m.device,
                                      dtype=m.dtype)
                ],
                          dim=1) for m, u in zip(mask_input, x)
            ]
        return x, seq_lens, rope_embs, mask_input

    def after_transformer_block(self, block_idx, hidden_states):
        if block_idx in self.audio_injector.injected_block_id.keys():
            audio_attn_id = self.audio_injector.injected_block_id[block_idx]
            audio_emb = self.merged_audio_emb  # b f n c
            num_frames = audio_emb.shape[1]

            if self.sp_world_size > 1:
                hidden_states = self.all_gather(hidden_states, dim=1)

            input_hidden_states = hidden_states[:, :self.original_seq_len].clone()
            input_hidden_states = rearrange(
                input_hidden_states, "b (t n) c -> (b t) n c", t=num_frames)

            if self.enbale_adain and self.adain_mode == "attn_norm":
                audio_emb_global = self.audio_emb_global
                audio_emb_global = rearrange(audio_emb_global,
                                             "b t n c -> (b t) n c")
                adain_hidden_states = self.audio_injector.injector_adain_layers[audio_attn_id](
                    input_hidden_states, temb=audio_emb_global[:, 0]
                )
                attn_hidden_states = adain_hidden_states
            else:
                attn_hidden_states = self.audio_injector.injector_pre_norm_feat[audio_attn_id](
                    input_hidden_states
                )
            audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
            attn_audio_emb = audio_emb
            context_lens = torch.ones(
                attn_hidden_states.shape[0], dtype=torch.long, device=attn_hidden_states.device
            ) * attn_audio_emb.shape[1]

            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                residual_out = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.audio_injector.injector[audio_attn_id]), 
                    attn_hidden_states,
                    attn_audio_emb,
                    context_lens,
                    **ckpt_kwargs
                )
            else:
                residual_out = self.audio_injector.injector[audio_attn_id](
                    x=attn_hidden_states,
                    context=attn_audio_emb,
                    context_lens=context_lens)
            residual_out = rearrange(residual_out, "(b t) n c -> b (t n) c", t=num_frames)
            hidden_states[:, :self.original_seq_len] = hidden_states[:, :self.original_seq_len] + residual_out

            if self.sp_world_size > 1:
                hidden_states = torch.chunk(
                    hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank]

        return hidden_states

    @cfg_skip()
    def forward(
        self,
        x,
        t,
        context,
        seq_len,
        ref_latents,
        motion_latents,
        cond_states,
        audio_input=None,
        motion_frames=[17, 5],
        add_last_motion=2,
        drop_motion_frames=False,
        cond_flag=True,
        *extra_args,
        **extra_kwargs
    ):
        """
        x:                  A list of videos each with shape [C, T, H, W].
        t:                  [B].
        context:            A list of text embeddings each with shape [L, C].
        seq_len:            A list of video token lens, no need for this model.
        ref_latents         A list of reference image for each video with shape [C, 1, H, W].
        motion_latents      A list of  motion frames for each video with shape [C, T_m, H, W].
        cond_states         A list of condition frames (i.e. pose) each with shape [C, T, H, W].
        audio_input         The input audio embedding [B, num_wav2vec_layer, C_a, T_a].
        motion_frames       The number of motion frames and motion latents frames encoded by vae, i.e. [17, 5]
        add_last_motion     For the motioner, if add_last_motion > 0, it means that the most recent frame (i.e., the last frame) will be added.
                            For frame packing, the behavior depends on the value of add_last_motion:
                            add_last_motion = 0: Only the farthest part of the latent (i.e., clean_latents_4x) is included.
                            add_last_motion = 1: Both clean_latents_2x and clean_latents_4x are included.
                            add_last_motion = 2: All motion-related latents are used.
        drop_motion_frames  Bool, whether drop the motion frames info
        """
        device = self.patch_embedding.weight.device
        dtype = x.dtype
        if self.freqs.device != device and torch.device(type="meta") != device:
            self.freqs = self.freqs.to(device)
        add_last_motion = self.add_last_motion * add_last_motion

        # Embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]

        if isinstance(motion_frames[0], list):
            motion_frames_0 = motion_frames[0][0]
            motion_frames_1 = motion_frames[0][1]
        else:
            motion_frames_0 = motion_frames[0]
            motion_frames_1 = motion_frames[1]
        # Audio process
        audio_input = torch.cat([audio_input[..., 0:1].repeat(1, 1, 1, motion_frames_0), audio_input], dim=-1)
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward
            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
            audio_emb_res = torch.utils.checkpoint.checkpoint(create_custom_forward(self.casual_audio_encoder), audio_input, **ckpt_kwargs)
        else:
            audio_emb_res = self.casual_audio_encoder(audio_input)
        if self.enbale_adain:
            audio_emb_global, audio_emb = audio_emb_res
            self.audio_emb_global = audio_emb_global[:, motion_frames_1:].clone()
        else:
            audio_emb = audio_emb_res
        self.merged_audio_emb = audio_emb[:, motion_frames_1:, :]

        # Cond states
        cond = [self.cond_encoder(c.unsqueeze(0)) for c in cond_states]
        x = [x_ + pose for x_, pose in zip(x, cond)]

        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)

        original_grid_sizes = deepcopy(grid_sizes)
        grid_sizes = [[torch.zeros_like(grid_sizes), grid_sizes, grid_sizes]]

        # Ref latents 
        ref = [self.patch_embedding(r.unsqueeze(0)) for r in ref_latents]
        batch_size = len(ref)
        height, width = ref[0].shape[3], ref[0].shape[4]
        ref = [r.flatten(2).transpose(1, 2) for r in ref]  # r: 1 c f h w
        x = [torch.cat([u, r], dim=1) for u, r in zip(x, ref)]

        self.original_seq_len = seq_lens[0]
        seq_lens = seq_lens + torch.tensor([r.size(1) for r in ref], dtype=torch.long)
        ref_grid_sizes = [
            [
                torch.tensor([30, 0, 0]).unsqueeze(0).repeat(batch_size, 1),  # the start index
                torch.tensor([31, height,width]).unsqueeze(0).repeat(batch_size, 1),  # the end index
                torch.tensor([1, height, width]).unsqueeze(0).repeat(batch_size, 1),
            ]  # the range           
        ]
        grid_sizes = grid_sizes + ref_grid_sizes

        # Compute the rope embeddings for the input
        x = torch.cat(x)
        b, s, n, d = x.size(0), x.size(1), self.num_heads, self.dim // self.num_heads
        self.pre_compute_freqs = rope_precompute(
            x.detach().view(b, s, n, d), grid_sizes, self.freqs, start=None)
        x = [u.unsqueeze(0) for u in x]
        self.pre_compute_freqs = [u.unsqueeze(0) for u in self.pre_compute_freqs]

        # Inject Motion latents.
        # Initialize masks to indicate noisy latent, ref latent, and motion latent.
        # However, at this point, only the first two (noisy and ref latents) are marked;
        # the marking of motion latent will be implemented inside `inject_motion`.
        mask_input = [
            torch.zeros([1, u.shape[1]], dtype=torch.long, device=x[0].device)
            for u in x
        ]
        for i in range(len(mask_input)):
            mask_input[i][:, self.original_seq_len:] = 1

        self.lat_motion_frames = motion_latents[0].shape[1]
        x, seq_lens, self.pre_compute_freqs, mask_input = self.inject_motion(
            x,
            seq_lens,
            self.pre_compute_freqs,
            mask_input,
            motion_latents,
            drop_motion_frames=drop_motion_frames,
            add_last_motion=add_last_motion)
        x = torch.cat(x, dim=0)
        self.pre_compute_freqs = torch.cat(self.pre_compute_freqs, dim=0)
        mask_input = torch.cat(mask_input, dim=0)

        # Apply trainable_cond_mask
        x = x + self.trainable_cond_mask(mask_input).to(x.dtype)

        seq_len = seq_lens.max()
        if self.sp_world_size > 1:
            seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u.unsqueeze(0), u.new_zeros(1, seq_len - u.size(0), u.size(1))],
                      dim=1) for u in x
        ])

        # Time embeddings
        if self.zero_timestep:
            t = torch.cat([t, torch.zeros([1], dtype=t.dtype, device=t.device)])
        with amp.autocast(dtype=torch.float32):
            e = self.time_embedding(
                sinusoidal_embedding_1d(self.freq_dim, t).float())
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
            assert e.dtype == torch.float32 and e0.dtype == torch.float32

        if self.zero_timestep:
            e = e[:-1]
            zero_e0 = e0[-1:]
            e0 = e0[:-1]
            token_len = x.shape[1]

            e0 = torch.cat(
                [
                    e0.unsqueeze(2),
                    zero_e0.unsqueeze(2).repeat(e0.size(0), 1, 1, 1)
                ],
                dim=2
            )
            e0 = [e0, self.original_seq_len]
        else:
            e0 = e0.unsqueeze(2).repeat(1, 1, 2, 1)
            e0 = [e0, 0]

        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))

        if self.sp_world_size > 1:
            # Sharded tensors for long context attn
            x = torch.chunk(x, self.sp_world_size, dim=1)
            sq_size = [u.shape[1] for u in x]
            sq_start_size = sum(sq_size[:self.sp_world_rank])
            x = x[self.sp_world_rank]
            # Confirm the application range of the time embedding in e0[0] for each sequence:
            # - For tokens before seg_id: apply e0[0][:, :, 0]
            # - For tokens after seg_id: apply e0[0][:, :, 1]
            sp_size = x.shape[1]
            seg_idx = e0[1] - sq_start_size
            e0[1] = seg_idx

            self.pre_compute_freqs = torch.chunk(self.pre_compute_freqs, self.sp_world_size, dim=1)
            self.pre_compute_freqs = self.pre_compute_freqs[self.sp_world_rank]

        # TeaCache
        if self.teacache is not None:
            if cond_flag:
                if t.dim() != 1:
                    modulated_inp = e0[0][:, -1, :]
                else:
                    modulated_inp = e0[0]
                skip_flag = self.teacache.cnt < self.teacache.num_skip_start_steps
                if skip_flag:
                    self.should_calc = True
                    self.teacache.accumulated_rel_l1_distance = 0
                else:
                    if cond_flag:
                        rel_l1_distance = self.teacache.compute_rel_l1_distance(self.teacache.previous_modulated_input, modulated_inp)
                        self.teacache.accumulated_rel_l1_distance += self.teacache.rescale_func(rel_l1_distance)
                    if self.teacache.accumulated_rel_l1_distance < self.teacache.rel_l1_thresh:
                        self.should_calc = False
                    else:
                        self.should_calc = True
                        self.teacache.accumulated_rel_l1_distance = 0
                self.teacache.previous_modulated_input = modulated_inp
                self.teacache.should_calc = self.should_calc
            else:
                self.should_calc = self.teacache.should_calc

        # TeaCache
        if self.teacache is not None:
            if not self.should_calc:
                previous_residual = self.teacache.previous_residual_cond if cond_flag else self.teacache.previous_residual_uncond
                x = x + previous_residual.to(x.device)[-x.size()[0]:,]
            else:
                ori_x = x.clone().cpu() if self.teacache.offload else x.clone()

                for idx, block in enumerate(self.blocks):
                    if torch.is_grad_enabled() and self.gradient_checkpointing:

                        def create_custom_forward(module):
                            def custom_forward(*inputs):
                                return module(*inputs)

                            return custom_forward
                        ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                        x = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(block),
                            x,
                            e0,
                            seq_lens,
                            grid_sizes,
                            self.pre_compute_freqs,
                            context,
                            context_lens,
                            dtype,
                            t,
                            **ckpt_kwargs,
                        )
                        x = self.after_transformer_block(idx, x)
                    else:
                        # arguments
                        kwargs = dict(
                            e=e0,
                            seq_lens=seq_lens,
                            grid_sizes=grid_sizes,
                            freqs=self.pre_compute_freqs,
                            context=context,
                            context_lens=context_lens,
                            dtype=dtype,
                            t=t  
                        )
                        x = block(x, **kwargs)
                        x = self.after_transformer_block(idx, x)
                    
                if cond_flag:
                    self.teacache.previous_residual_cond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
                else:
                    self.teacache.previous_residual_uncond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
        else:
            for idx, block in enumerate(self.blocks):
                if torch.is_grad_enabled() and self.gradient_checkpointing:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs)

                        return custom_forward
                    ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                    x = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        x,
                        e0,
                        seq_lens,
                        grid_sizes,
                        self.pre_compute_freqs,
                        context,
                        context_lens,
                        dtype,
                        t,
                        **ckpt_kwargs,
                    )
                    x = self.after_transformer_block(idx, x)
                else:
                    # arguments
                    kwargs = dict(
                        e=e0,
                        seq_lens=seq_lens,
                        grid_sizes=grid_sizes,
                        freqs=self.pre_compute_freqs,
                        context=context,
                        context_lens=context_lens,
                        dtype=dtype,
                        t=t  
                    )
                    x = block(x, **kwargs)
                    x = self.after_transformer_block(idx, x)

        # Context Parallel
        if self.sp_world_size > 1:
            x = self.all_gather(x.contiguous(), dim=1)

        # Unpatchify
        x = x[:, :self.original_seq_len]
        # head
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward
            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
            x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.head), x, e, **ckpt_kwargs)
        else:
            x = self.head(x, e)
        x = self.unpatchify(x, original_grid_sizes)
        x = torch.stack(x)
        if self.teacache is not None and cond_flag:
            self.teacache.cnt += 1
            if self.teacache.cnt == self.teacache.num_steps:
                self.teacache.reset()
        return x

    def unpatchify(self, x, grid_sizes):
        """
        Reconstruct video tensors from patch embeddings.

        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)

        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
        """

        c = self.out_dim
        out = []
        for u, v in zip(x, grid_sizes.tolist()):
            u = u[:math.prod(v)].view(*v, *self.patch_size, c)
            u = torch.einsum('fhwpqrc->cfphqwr', u)
            u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
            out.append(u)
        return out

    def zero_init_weights(self):
        with torch.no_grad():
            self.trainable_cond_mask = zero_module(self.trainable_cond_mask)
            if hasattr(self, "cond_encoder"):
                self.cond_encoder = zero_module(self.cond_encoder)

            for i in range(self.audio_injector.injector.__len__()):
                self.audio_injector.injector[i].o = zero_module(
                    self.audio_injector.injector[i].o)
                if self.enbale_adain:
                    self.audio_injector.injector_adain_layers[i].linear = \
                        zero_module(self.audio_injector.injector_adain_layers[i].linear)