File size: 21,856 Bytes
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/app.py
"""
import base64
import gc
import json
import os
import hashlib
import random
from datetime import datetime
from glob import glob

import cv2
import gradio as gr
import numpy as np
import pkg_resources
import requests
import torch
from diffusers import (CogVideoXDDIMScheduler, DDIMScheduler,
                       DPMSolverMultistepScheduler,
                       EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
                       FlowMatchEulerDiscreteScheduler, PNDMScheduler)
from omegaconf import OmegaConf
from PIL import Image
from safetensors import safe_open

from ..data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio
from ..utils.utils import save_videos_grid
from ..utils.fm_solvers import FlowDPMSolverMultistepScheduler
from ..utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from ..dist import set_multi_gpus_devices

gradio_version = pkg_resources.get_distribution("gradio").version
gradio_version_is_above_4 = True if int(gradio_version.split('.')[0]) >= 4 else False

css = """
.toolbutton {
    margin-buttom: 0em 0em 0em 0em;
    max-width: 2.5em;
    min-width: 2.5em !important;
    height: 2.5em;
}
"""

ddpm_scheduler_dict = {
    "Euler": EulerDiscreteScheduler,
    "Euler A": EulerAncestralDiscreteScheduler,
    "DPM++": DPMSolverMultistepScheduler, 
    "PNDM": PNDMScheduler,
    "DDIM": DDIMScheduler,
    "DDIM_Origin": DDIMScheduler,
    "DDIM_Cog": CogVideoXDDIMScheduler,
}
flow_scheduler_dict = {
    "Flow": FlowMatchEulerDiscreteScheduler,
    "Flow_Unipc": FlowUniPCMultistepScheduler,
    "Flow_DPM++": FlowDPMSolverMultistepScheduler,
}
all_cheduler_dict = {**ddpm_scheduler_dict, **flow_scheduler_dict}

class Fun_Controller:
    def __init__(
        self, GPU_memory_mode, scheduler_dict, model_name=None, model_type="Inpaint", 
        config_path=None, ulysses_degree=1, ring_degree=1, 
        fsdp_dit=False, fsdp_text_encoder=False, compile_dit=False, 
        weight_dtype=None, savedir_sample=None,
    ):
        # config dirs
        self.basedir                    = os.getcwd()
        self.config_dir                 = os.path.join(self.basedir, "config")
        self.diffusion_transformer_dir  = os.path.join(self.basedir, "models", "Diffusion_Transformer")
        self.motion_module_dir          = os.path.join(self.basedir, "models", "Motion_Module")
        self.personalized_model_dir     = os.path.join(self.basedir, "models", "Personalized_Model")
        if savedir_sample is None:
            self.savedir_sample         = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
        else:
            self.savedir_sample         = savedir_sample
        os.makedirs(self.savedir_sample, exist_ok=True)

        self.GPU_memory_mode                = GPU_memory_mode
        self.model_name                     = model_name
        self.diffusion_transformer_dropdown = model_name
        self.scheduler_dict             = scheduler_dict
        self.model_type                 = model_type
        if config_path is not None:
            self.config_path            = os.path.realpath(config_path)
            self.config                 = OmegaConf.load(config_path)
        else:
            self.config_path            = None
        self.ulysses_degree             = ulysses_degree
        self.ring_degree                = ring_degree
        self.fsdp_dit                   = fsdp_dit       
        self.fsdp_text_encoder          = fsdp_text_encoder
        self.compile_dit                = compile_dit
        self.weight_dtype               = weight_dtype
        self.device                     = set_multi_gpus_devices(self.ulysses_degree, self.ring_degree)

        self.diffusion_transformer_list = []
        self.motion_module_list         = []
        self.personalized_model_list    = []
        self.config_list                = []

        # config models
        self.tokenizer             = None
        self.text_encoder          = None
        self.vae                   = None
        self.transformer           = None
        self.transformer_2         = None
        self.pipeline              = None
        self.base_model_path       = "none"
        self.base_model_2_path     = "none"
        self.lora_model_path       = "none"
        self.lora_model_2_path     = "none"
        
        self.refresh_config()
        self.refresh_diffusion_transformer()
        self.refresh_personalized_model()
        if model_name != None:
            self.update_diffusion_transformer(model_name)

    def refresh_config(self):
        config_list = []
        for root, dirs, files in os.walk(self.config_dir):
            for file in files:
                if file.endswith(('.yaml', '.yml')):
                    full_path = os.path.join(root, file)
                    config_list.append(full_path)
        self.config_list = config_list

    def refresh_diffusion_transformer(self):
        self.diffusion_transformer_list = sorted(glob(os.path.join(self.diffusion_transformer_dir, "*/")))

    def refresh_personalized_model(self):
        personalized_model_list = sorted(glob(os.path.join(self.personalized_model_dir, "*.safetensors")))
        self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list]

    def update_model_type(self, model_type):
        self.model_type = model_type

    def update_config(self, config_dropdown):
        self.config_path = config_dropdown
        self.config = OmegaConf.load(config_dropdown)
        print(f"Update config: {config_dropdown}")

    def update_diffusion_transformer(self, diffusion_transformer_dropdown):
        pass

    def update_base_model(self, base_model_dropdown, is_checkpoint_2=False):
        if not is_checkpoint_2:
            self.base_model_path = base_model_dropdown
        else:
            self.base_model_2_path = base_model_dropdown
        print(f"Update base model: {base_model_dropdown}")
        if base_model_dropdown == "none":
            return gr.update()
        if self.transformer is None and not is_checkpoint_2:
            gr.Info(f"Please select a pretrained model path.")
            print(f"Please select a pretrained model path.")
            return gr.update(value=None)
        elif self.transformer_2 is None and is_checkpoint_2:
            gr.Info(f"Please select a pretrained model path.")
            print(f"Please select a pretrained model path.")
            return gr.update(value=None)
        else:
            base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
            base_model_state_dict = {}
            with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
                for key in f.keys():
                    base_model_state_dict[key] = f.get_tensor(key)
            if not is_checkpoint_2:
                self.transformer.load_state_dict(base_model_state_dict, strict=False)
            else:
                self.transformer_2.load_state_dict(base_model_state_dict, strict=False)
            print("Update base model done")
            return gr.update()

    def update_lora_model(self, lora_model_dropdown, is_checkpoint_2=False):
        print(f"Update lora model: {lora_model_dropdown}")
        if lora_model_dropdown == "none":
            self.lora_model_path = "none"
            return gr.update()
        lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown)
        if not is_checkpoint_2:
            self.lora_model_path = lora_model_dropdown
        else:
            self.lora_model_2_path = lora_model_dropdown
        return gr.update()

    def clear_cache(self,):
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

    def auto_model_clear_cache(self, model):
        origin_device = model.device
        model = model.to("cpu")
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()
        model = model.to(origin_device)
    
    def input_check(self,
        resize_method,
        generation_method, 
        start_image, 
        end_image, 
        validation_video,
        control_video,
        is_api = False,
    ):
        if self.transformer is None:
            if is_api:
                return "", f"Please select a pretrained model path."
            else:
                raise gr.Error(f"Please select a pretrained model path.")
        
        if control_video is not None and self.model_type == "Inpaint":
            if is_api:
                return "", f"If specifying the control video, please set the model_type == \"Control\". "
            else:
                raise gr.Error(f"If specifying the control video, please set the model_type == \"Control\". ")

        if control_video is None and self.model_type == "Control":
            if is_api:
                return "", f"If set the model_type == \"Control\", please specifying the control video. "
            else:
                raise gr.Error(f"If set the model_type == \"Control\", please specifying the control video. ")

        if resize_method == "Resize according to Reference":
            if start_image is None and validation_video is None and control_video is None:
                if is_api:
                    return "", f"Please upload an image when using \"Resize according to Reference\"."
                else:
                    raise gr.Error(f"Please upload an image when using \"Resize according to Reference\".")

        if self.transformer.config.in_channels == self.vae.config.latent_channels and start_image is not None:
            if is_api:
                return "", f"Please select an image to video pretrained model while using image to video."
            else:
                raise gr.Error(f"Please select an image to video pretrained model while using image to video.")

        if self.transformer.config.in_channels == self.vae.config.latent_channels and generation_method == "Long Video Generation":
            if is_api:
                return "", f"Please select an image to video pretrained model while using long video generation."
            else:
                raise gr.Error(f"Please select an image to video pretrained model while using long video generation.")
        
        if start_image is None and end_image is not None:
            if is_api:
                return "", f"If specifying the ending image of the video, please specify a starting image of the video."
            else:
                raise gr.Error(f"If specifying the ending image of the video, please specify a starting image of the video.")
        return "", "OK"

    def get_height_width_from_reference(
        self,
        base_resolution,
        start_image,
        validation_video,
        control_video,
    ):
        spatial_compression_ratio = self.vae.config.spatial_compression_ratio if hasattr(self.vae.config, "spatial_compression_ratio") else 8
        aspect_ratio_sample_size    = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
        if self.model_type == "Inpaint":
            if validation_video is not None:
                original_width, original_height = Image.fromarray(cv2.VideoCapture(validation_video).read()[1]).size
            else:
                original_width, original_height = start_image[0].size if type(start_image) is list else Image.open(start_image).size
        else:
            original_width, original_height = Image.fromarray(cv2.VideoCapture(control_video).read()[1]).size
        closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
        height_slider, width_slider = [int(x / spatial_compression_ratio / 2) * spatial_compression_ratio * 2 for x in closest_size]
        return height_slider, width_slider

    def save_outputs(self, is_image, length_slider, sample, fps):
        def save_results():
            if not os.path.exists(self.savedir_sample):
                os.makedirs(self.savedir_sample, exist_ok=True)
            index = len([path for path in os.listdir(self.savedir_sample)]) + 1
            prefix = str(index).zfill(8)

            md5_hash = hashlib.md5(sample.cpu().numpy().tobytes()).hexdigest()

            if is_image or length_slider == 1:
                save_sample_path = os.path.join(self.savedir_sample, prefix + f"-{md5_hash}.png")
                print(f"Saving to {save_sample_path}")
                image = sample[0, :, 0]
                image = image.transpose(0, 1).transpose(1, 2)
                image = (image * 255).numpy().astype(np.uint8)
                image = Image.fromarray(image)
                image.save(save_sample_path)

            else:
                save_sample_path = os.path.join(self.savedir_sample, prefix + f"-{md5_hash}.mp4")
                print(f"Saving to {save_sample_path}")
                save_videos_grid(sample, save_sample_path, fps=fps)
            return save_sample_path

        if self.ulysses_degree * self.ring_degree > 1:
            import torch.distributed as dist
            if dist.get_rank() == 0:
                save_sample_path = save_results()
            else:
                save_sample_path = None
        else:
            save_sample_path = save_results()
        return save_sample_path

    def generate(
        self,
        diffusion_transformer_dropdown,
        base_model_dropdown,
        lora_model_dropdown, 
        lora_alpha_slider,
        prompt_textbox, 
        negative_prompt_textbox, 
        sampler_dropdown, 
        sample_step_slider, 
        resize_method,
        width_slider, 
        height_slider, 
        base_resolution, 
        generation_method, 
        length_slider, 
        overlap_video_length, 
        partial_video_length, 
        cfg_scale_slider, 
        start_image, 
        end_image, 
        validation_video,
        validation_video_mask,
        control_video,
        denoise_strength,
        seed_textbox,
        enable_teacache = None, 
        teacache_threshold = None, 
        num_skip_start_steps = None, 
        teacache_offload = None, 
        cfg_skip_ratio = None,
        enable_riflex = None, 
        riflex_k = None, 
        is_api = False,
    ):
        pass

def post_to_host(
    diffusion_transformer_dropdown,
    base_model_dropdown, lora_model_dropdown, lora_alpha_slider,
    prompt_textbox, negative_prompt_textbox, 
    sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider,
    base_resolution, generation_method, length_slider, cfg_scale_slider, 
    start_image, end_image, validation_video, validation_video_mask, denoise_strength, seed_textbox,
    ref_image = None, enable_teacache = None, teacache_threshold = None, num_skip_start_steps = None, 
    teacache_offload = None, cfg_skip_ratio = None,enable_riflex = None, riflex_k = None, 
):
    if start_image is not None:
        with open(start_image, 'rb') as file:
            file_content = file.read()
            start_image_encoded_content = base64.b64encode(file_content)
            start_image = start_image_encoded_content.decode('utf-8')

    if end_image is not None:
        with open(end_image, 'rb') as file:
            file_content = file.read()
            end_image_encoded_content = base64.b64encode(file_content)
            end_image = end_image_encoded_content.decode('utf-8')

    if validation_video is not None:
        with open(validation_video, 'rb') as file:
            file_content = file.read()
            validation_video_encoded_content = base64.b64encode(file_content)
            validation_video = validation_video_encoded_content.decode('utf-8')

    if validation_video_mask is not None:
        with open(validation_video_mask, 'rb') as file:
            file_content = file.read()
            validation_video_mask_encoded_content = base64.b64encode(file_content)
            validation_video_mask = validation_video_mask_encoded_content.decode('utf-8')

    if ref_image is not None:
        with open(ref_image, 'rb') as file:
            file_content = file.read()
            ref_image_encoded_content = base64.b64encode(file_content)
            ref_image = ref_image_encoded_content.decode('utf-8')

    datas = {
        "base_model_path": base_model_dropdown,
        "lora_model_path": lora_model_dropdown, 
        "lora_alpha_slider": lora_alpha_slider, 
        "prompt_textbox": prompt_textbox, 
        "negative_prompt_textbox": negative_prompt_textbox, 
        "sampler_dropdown": sampler_dropdown, 
        "sample_step_slider": sample_step_slider, 
        "resize_method": resize_method,
        "width_slider": width_slider, 
        "height_slider": height_slider, 
        "base_resolution": base_resolution,
        "generation_method": generation_method,
        "length_slider": length_slider,
        "cfg_scale_slider": cfg_scale_slider,
        "start_image": start_image,
        "end_image": end_image,
        "validation_video": validation_video,
        "validation_video_mask": validation_video_mask,
        "denoise_strength": denoise_strength,
        "seed_textbox": seed_textbox,

        "ref_image": ref_image,
        "enable_teacache": enable_teacache,
        "teacache_threshold": teacache_threshold,
        "num_skip_start_steps": num_skip_start_steps,
        "teacache_offload": teacache_offload,
        "cfg_skip_ratio": cfg_skip_ratio,
        "enable_riflex": enable_riflex,
        "riflex_k": riflex_k,
    }

    session = requests.session()
    session.headers.update({"Authorization": os.environ.get("EAS_TOKEN")})

    response = session.post(url=f'{os.environ.get("EAS_URL")}/videox_fun/infer_forward', json=datas, timeout=300)

    outputs = response.json()
    return outputs


class Fun_Controller_Client:
    def __init__(self, scheduler_dict, savedir_sample):
        self.basedir = os.getcwd()
        if savedir_sample is None:
            self.savedir_sample         = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
        else:
            self.savedir_sample         = savedir_sample
        os.makedirs(self.savedir_sample, exist_ok=True)
        
        self.scheduler_dict = scheduler_dict

    def generate(
        self,
        diffusion_transformer_dropdown,
        base_model_dropdown,
        lora_model_dropdown, 
        lora_alpha_slider,
        prompt_textbox, 
        negative_prompt_textbox, 
        sampler_dropdown, 
        sample_step_slider, 
        resize_method,
        width_slider, 
        height_slider, 
        base_resolution, 
        generation_method, 
        length_slider, 
        cfg_scale_slider, 
        start_image, 
        end_image, 
        validation_video, 
        validation_video_mask, 
        denoise_strength,
        seed_textbox,
        ref_image = None,
        enable_teacache = None, 
        teacache_threshold = None, 
        num_skip_start_steps = None, 
        teacache_offload = None, 
        cfg_skip_ratio = None,
        enable_riflex = None, 
        riflex_k = None, 
    ):
        is_image = True if generation_method == "Image Generation" else False

        outputs = post_to_host(
            diffusion_transformer_dropdown,
            base_model_dropdown, lora_model_dropdown, lora_alpha_slider,
            prompt_textbox, negative_prompt_textbox, 
            sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider,
            base_resolution, generation_method, length_slider, cfg_scale_slider, 
            start_image, end_image, validation_video, validation_video_mask, denoise_strength, 
            seed_textbox, ref_image = ref_image, enable_teacache = enable_teacache, teacache_threshold = teacache_threshold, 
            num_skip_start_steps = num_skip_start_steps, teacache_offload = teacache_offload, 
            cfg_skip_ratio = cfg_skip_ratio, enable_riflex = enable_riflex, riflex_k = riflex_k, 
        )

        try:
            base64_encoding = outputs["base64_encoding"]
        except:
            return gr.Image(visible=False, value=None), gr.Video(None, visible=True), outputs["message"]
            
        decoded_data = base64.b64decode(base64_encoding)

        if not os.path.exists(self.savedir_sample):
            os.makedirs(self.savedir_sample, exist_ok=True)
        md5_hash = hashlib.md5(decoded_data).hexdigest()

        index = len([path for path in os.listdir(self.savedir_sample)]) + 1
        prefix = str(index).zfill(8)
        
        if is_image or length_slider == 1:
            save_sample_path = os.path.join(self.savedir_sample, prefix + f"-{md5_hash}.png")
            print(f"Saving to {save_sample_path}")
            with open(save_sample_path, "wb") as file:
                file.write(decoded_data)
            if gradio_version_is_above_4:
                return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success"
            else:
                return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success"
        else:
            save_sample_path = os.path.join(self.savedir_sample, prefix + f"-{md5_hash}.mp4")
            print(f"Saving to {save_sample_path}")
            with open(save_sample_path, "wb") as file:
                file.write(decoded_data)
            if gradio_version_is_above_4:
                return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success"
            else:
                return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success"