File size: 14,112 Bytes
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# This file is modified from https://github.com/xdit-project/xDiT/blob/main/entrypoints/launch.py
import base64
import gc
import hashlib
import io
import os
import tempfile
from io import BytesIO

import gradio as gr
import requests
import torch
import torch.distributed as dist
from fastapi import FastAPI, HTTPException
from PIL import Image

from .api import download_from_url, encode_file_to_base64

try:
    import ray
except:
    print("Ray is not installed. If you want to use multi gpus api. Please install it by running 'pip install ray'.")
    ray =  None

def save_base64_video_dist(base64_string):
    video_data = base64.b64decode(base64_string)

    md5_hash = hashlib.md5(video_data).hexdigest()
    filename = f"{md5_hash}.mp4"  
    
    temp_dir = tempfile.gettempdir()
    file_path = os.path.join(temp_dir, filename)

    if dist.is_initialized():
        if dist.get_rank() == 0:
            with open(file_path, 'wb') as video_file:
                video_file.write(video_data)
        dist.barrier()
    else:
        with open(file_path, 'wb') as video_file:
            video_file.write(video_data)
    return file_path

def save_base64_image_dist(base64_string):
    video_data = base64.b64decode(base64_string)

    md5_hash = hashlib.md5(video_data).hexdigest()
    filename = f"{md5_hash}.jpg"  
    
    temp_dir = tempfile.gettempdir()
    file_path = os.path.join(temp_dir, filename)

    if dist.is_initialized():
        if dist.get_rank() == 0:
            with open(file_path, 'wb') as video_file:
                video_file.write(video_data)
        dist.barrier()
    else:
        with open(file_path, 'wb') as video_file:
            video_file.write(video_data)
    return file_path

def save_url_video_dist(url):
    video_data = download_from_url(url)
    if video_data:
        return save_base64_video_dist(base64.b64encode(video_data))
    return None

def save_url_image_dist(url):
    image_data = download_from_url(url)
    if image_data:
        return save_base64_image_dist(base64.b64encode(image_data))
    return None

if ray is not None:
    @ray.remote(num_gpus=1)
    class MultiNodesGenerator:
        def __init__(
            self, rank: int, world_size: int, Controller,
            GPU_memory_mode, scheduler_dict, model_name=None, model_type="Inpaint", 
            config_path=None, ulysses_degree=1, ring_degree=1,
            fsdp_dit=False, fsdp_text_encoder=False, compile_dit=False, 
            weight_dtype=None, savedir_sample=None,
        ):
            # Set PyTorch distributed environment variables
            os.environ["RANK"] = str(rank)
            os.environ["WORLD_SIZE"] = str(world_size)
            os.environ["MASTER_ADDR"] = "127.0.0.1"
            os.environ["MASTER_PORT"] = "29500"
            
            self.rank = rank
            self.controller = Controller(
                GPU_memory_mode, scheduler_dict, model_name=model_name, model_type=model_type, config_path=config_path, 
                ulysses_degree=ulysses_degree, ring_degree=ring_degree, 
                fsdp_dit=fsdp_dit, fsdp_text_encoder=fsdp_text_encoder, compile_dit=compile_dit, 
                weight_dtype=weight_dtype, savedir_sample=savedir_sample,
            )

        def generate(self, datas):
            try:
                base_model_path = datas.get('base_model_path', 'none')
                base_model_2_path = datas.get('base_model_2_path', 'none')
                lora_model_path = datas.get('lora_model_path', 'none')
                lora_model_2_path = datas.get('lora_model_2_path', 'none')
                lora_alpha_slider = datas.get('lora_alpha_slider', 0.55)
                prompt_textbox = datas.get('prompt_textbox', None)
                negative_prompt_textbox = datas.get('negative_prompt_textbox', 'The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. ')
                sampler_dropdown = datas.get('sampler_dropdown', 'Euler')
                sample_step_slider = datas.get('sample_step_slider', 30)
                resize_method = datas.get('resize_method', "Generate by")
                width_slider = datas.get('width_slider', 672)
                height_slider = datas.get('height_slider', 384)
                base_resolution = datas.get('base_resolution', 512)
                is_image = datas.get('is_image', False)
                generation_method = datas.get('generation_method', False)
                length_slider = datas.get('length_slider', 49)
                overlap_video_length = datas.get('overlap_video_length', 4)
                partial_video_length = datas.get('partial_video_length', 72)
                cfg_scale_slider = datas.get('cfg_scale_slider', 6)
                start_image = datas.get('start_image', None)
                end_image = datas.get('end_image', None)
                validation_video = datas.get('validation_video', None)
                validation_video_mask = datas.get('validation_video_mask', None)
                control_video = datas.get('control_video', None)
                denoise_strength = datas.get('denoise_strength', 0.70)
                seed_textbox = datas.get("seed_textbox", 43)
        
                ref_image = datas.get('ref_image', None)
                enable_teacache = datas.get('enable_teacache', True)
                teacache_threshold = datas.get('teacache_threshold', 0.10)
                num_skip_start_steps = datas.get('num_skip_start_steps', 1)
                teacache_offload = datas.get('teacache_offload', False)
                cfg_skip_ratio = datas.get('cfg_skip_ratio', 0)
                enable_riflex = datas.get('enable_riflex', False)
                riflex_k = datas.get('riflex_k', 6)
                fps = datas.get('fps', None)

                generation_method = "Image Generation" if is_image else generation_method

                if start_image is not None:
                    if start_image.startswith('http'):
                        start_image = save_url_image_dist(start_image)
                        start_image = [Image.open(start_image).convert("RGB")]
                    else:
                        start_image = base64.b64decode(start_image)
                        start_image = [Image.open(BytesIO(start_image)).convert("RGB")]

                if end_image is not None:
                    if end_image.startswith('http'):
                        end_image = save_url_image_dist(end_image)
                        end_image = [Image.open(end_image).convert("RGB")]
                    else:
                        end_image = base64.b64decode(end_image)
                        end_image = [Image.open(BytesIO(end_image)).convert("RGB")]
                        
                if validation_video is not None:
                    if validation_video.startswith('http'):
                        validation_video = save_url_video_dist(validation_video)
                    else:
                        validation_video = save_base64_video_dist(validation_video)

                if validation_video_mask is not None:
                    if validation_video_mask.startswith('http'):
                        validation_video_mask = save_url_image_dist(validation_video_mask)
                    else:
                        validation_video_mask = save_base64_image_dist(validation_video_mask)

                if control_video is not None:
                    if control_video.startswith('http'):
                        control_video = save_url_video_dist(control_video)
                    else:
                        control_video = save_base64_video_dist(control_video)
                
                if ref_image is not None:
                    if ref_image.startswith('http'):
                        ref_image = save_url_image_dist(ref_image)
                        ref_image = [Image.open(ref_image).convert("RGB")]
                    else:
                        ref_image = base64.b64decode(ref_image)
                        ref_image = [Image.open(BytesIO(ref_image)).convert("RGB")]

                try:
                    save_sample_path, comment = self.controller.generate(
                        "",
                        base_model_path,
                        lora_model_path, 
                        lora_alpha_slider,
                        prompt_textbox, 
                        negative_prompt_textbox, 
                        sampler_dropdown, 
                        sample_step_slider, 
                        resize_method,
                        width_slider, 
                        height_slider, 
                        base_resolution,
                        generation_method,
                        length_slider, 
                        overlap_video_length, 
                        partial_video_length, 
                        cfg_scale_slider, 
                        start_image,
                        end_image,
                        validation_video,
                        validation_video_mask, 
                        control_video, 
                        denoise_strength,
                        seed_textbox,
                        ref_image = ref_image,
                        enable_teacache = enable_teacache, 
                        teacache_threshold = teacache_threshold, 
                        num_skip_start_steps = num_skip_start_steps, 
                        teacache_offload = teacache_offload, 
                        cfg_skip_ratio = cfg_skip_ratio,
                        enable_riflex = enable_riflex, 
                        riflex_k = riflex_k, 
                        base_model_2_dropdown = base_model_2_path,
                        lora_model_2_dropdown = lora_model_2_path,
                        fps = fps,
                        is_api = True,
                    )
                except Exception as e:
                    gc.collect()
                    torch.cuda.empty_cache()
                    torch.cuda.ipc_collect()
                    save_sample_path = ""
                    comment = f"Error. error information is {str(e)}"
                    if dist.is_initialized():
                        if dist.get_rank() == 0:
                            return {"message": comment, "save_sample_path": None, "base64_encoding": None}
                        else:
                            return None
                    else:
                        return {"message": comment, "save_sample_path": None, "base64_encoding": None}


                if dist.is_initialized():
                    if dist.get_rank() == 0:
                        if save_sample_path != "":
                            return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)}
                        else:
                            return {"message": comment, "save_sample_path": None, "base64_encoding": None}
                    else:
                        return None
                else:
                    if save_sample_path != "":
                        return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)}
                    else:
                        return {"message": comment, "save_sample_path": None, "base64_encoding": None}

            except Exception as e:
                print(f"Error generating: {str(e)}")
                comment = f"Error generating: {str(e)}"
                if dist.is_initialized():
                    if dist.get_rank() == 0:
                        return {"message": comment, "save_sample_path": None, "base64_encoding": None}
                    else:
                        return None
                else:
                    return {"message": comment, "save_sample_path": None, "base64_encoding": None}

    class MultiNodesEngine:
        def __init__(
            self, 
            world_size, 
            Controller,
            GPU_memory_mode, 
            scheduler_dict, 
            model_name, 
            model_type, 
            config_path,
            ulysses_degree=1, 
            ring_degree=1, 
            fsdp_dit=False,
            fsdp_text_encoder=False,
            compile_dit=False,
            weight_dtype=torch.bfloat16,
            savedir_sample="samples"
        ):
            # Ensure Ray is initialized
            if not ray.is_initialized():
                ray.init()
            
            num_workers = world_size
            self.workers = [
                MultiNodesGenerator.remote(
                    rank, world_size, Controller, 
                    GPU_memory_mode, scheduler_dict, model_name=model_name, model_type=model_type, config_path=config_path, 
                    ulysses_degree=ulysses_degree, ring_degree=ring_degree, 
                    fsdp_dit=fsdp_dit, fsdp_text_encoder=fsdp_text_encoder, compile_dit=compile_dit, 
                    weight_dtype=weight_dtype, savedir_sample=savedir_sample,
                )
                for rank in range(num_workers)
            ]
            print("Update workers done")
            
        async def generate(self, data):
            results = ray.get([
                worker.generate.remote(data)
                for worker in self.workers
            ])

            return next(path for path in results if path is not None) 

    def multi_nodes_infer_forward_api(_: gr.Blocks, app: FastAPI, engine):

        @app.post("/videox_fun/infer_forward")
        async def _multi_nodes_infer_forward_api(
            datas: dict,
        ):
            try:
                result = await engine.generate(datas)
                return result
            except Exception as e:
                if isinstance(e, HTTPException):
                    raise e
                raise HTTPException(status_code=500, detail=str(e))
else:
    MultiNodesEngine = None
    MultiNodesGenerator = None
    multi_nodes_infer_forward_api = None