Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,787 Bytes
d2c9b66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import csv
import gc
import io
import json
import math
import os
import random
from contextlib import contextmanager
from random import shuffle
from threading import Thread
import albumentations
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from decord import VideoReader
from einops import rearrange
from func_timeout import FunctionTimedOut, func_timeout
from packaging import version as pver
from PIL import Image
from safetensors.torch import load_file
from torch.utils.data import BatchSampler, Sampler
from torch.utils.data.dataset import Dataset
VIDEO_READER_TIMEOUT = 20
def get_random_mask(shape, image_start_only=False):
f, c, h, w = shape
mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)
if not image_start_only:
if f != 1:
mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05])
else:
mask_index = np.random.choice([0, 1, 7, 8], p = [0.2, 0.7, 0.05, 0.05])
if mask_index == 0:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask[:, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 1:
mask[:, :, :, :] = 1
elif mask_index == 2:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:, :, :, :] = 1
elif mask_index == 3:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
elif mask_index == 4:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask_frame_before = np.random.randint(0, f // 2)
mask_frame_after = np.random.randint(f // 2, f)
mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 5:
mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8)
elif mask_index == 6:
num_frames_to_mask = random.randint(1, max(f // 2, 1))
frames_to_mask = random.sample(range(f), num_frames_to_mask)
for i in frames_to_mask:
block_height = random.randint(1, h // 4)
block_width = random.randint(1, w // 4)
top_left_y = random.randint(0, h - block_height)
top_left_x = random.randint(0, w - block_width)
mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1
elif mask_index == 7:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item() # 长半轴
b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() # 短半轴
for i in range(h):
for j in range(w):
if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1:
mask[:, :, i, j] = 1
elif mask_index == 8:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item()
for i in range(h):
for j in range(w):
if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2:
mask[:, :, i, j] = 1
elif mask_index == 9:
for idx in range(f):
if np.random.rand() > 0.5:
mask[idx, :, :, :] = 1
else:
raise ValueError(f"The mask_index {mask_index} is not define")
else:
if f != 1:
mask[1:, :, :, :] = 1
else:
mask[:, :, :, :] = 1
return mask
@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
vr = VideoReader(*args, **kwargs)
try:
yield vr
finally:
del vr
gc.collect()
def get_video_reader_batch(video_reader, batch_index):
frames = video_reader.get_batch(batch_index).asnumpy()
return frames
def resize_frame(frame, target_short_side):
h, w, _ = frame.shape
if h < w:
if target_short_side > h:
return frame
new_h = target_short_side
new_w = int(target_short_side * w / h)
else:
if target_short_side > w:
return frame
new_w = target_short_side
new_h = int(target_short_side * h / w)
resized_frame = cv2.resize(frame, (new_w, new_h))
return resized_frame
def padding_image(images, new_width, new_height):
new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255))
aspect_ratio = images.width / images.height
if new_width / new_height > 1:
if aspect_ratio > new_width / new_height:
new_img_width = new_width
new_img_height = int(new_img_width / aspect_ratio)
else:
new_img_height = new_height
new_img_width = int(new_img_height * aspect_ratio)
else:
if aspect_ratio > new_width / new_height:
new_img_width = new_width
new_img_height = int(new_img_width / aspect_ratio)
else:
new_img_height = new_height
new_img_width = int(new_img_height * aspect_ratio)
resized_img = images.resize((new_img_width, new_img_height))
paste_x = (new_width - new_img_width) // 2
paste_y = (new_height - new_img_height) // 2
new_image.paste(resized_img, (paste_x, paste_y))
return new_image
def resize_image_with_target_area(img: Image.Image, target_area: int = 1024 * 1024) -> Image.Image:
"""
将 PIL 图像缩放到接近指定像素面积(target_area),保持原始宽高比,
并确保新宽度和高度均为 32 的整数倍。
参数:
img (PIL.Image.Image): 输入图像
target_area (int): 目标像素总面积,例如 1024*1024 = 1048576
返回:
PIL.Image.Image: Resize 后的图像
"""
orig_w, orig_h = img.size
if orig_w == 0 or orig_h == 0:
raise ValueError("Input image has zero width or height.")
ratio = orig_w / orig_h
ideal_width = math.sqrt(target_area * ratio)
ideal_height = ideal_width / ratio
new_width = round(ideal_width / 32) * 32
new_height = round(ideal_height / 32) * 32
new_width = max(32, new_width)
new_height = max(32, new_height)
new_width = int(new_width)
new_height = int(new_height)
resized_img = img.resize((new_width, new_height), Image.LANCZOS)
return resized_img
class Camera(object):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
w2c_mat = np.array(entry[7:]).reshape(3, 4)
w2c_mat_4x4 = np.eye(4)
w2c_mat_4x4[:3, :] = w2c_mat
self.w2c_mat = w2c_mat_4x4
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
def custom_meshgrid(*args):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def get_relative_pose(cam_params):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
cam_to_origin = 0
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, -cam_to_origin],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def ray_condition(K, c2w, H, W, device):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
# c2w: B, V, 4, 4
# K: B, V, 4
B = K.shape[0]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
# c2w @ dirctions
rays_dxo = torch.cross(rays_o, rays_d)
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
# plucker = plucker.permute(0, 1, 4, 2, 3)
return plucker
def process_pose_file(pose_file_path, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False):
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
with open(pose_file_path, 'r') as f:
poses = f.readlines()
poses = [pose.strip().split(' ') for pose in poses[1:]]
cam_params = [[float(x) for x in pose] for pose in poses]
if return_poses:
return cam_params
else:
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = width / height
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / width
else:
resized_ori_h = width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / height
intrinsic = np.asarray([[cam_param.fx * width,
cam_param.fy * height,
cam_param.cx * width,
cam_param.cy * height]
for cam_param in cam_params], dtype=np.float32)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
plucker_embedding = plucker_embedding[None]
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
return plucker_embedding
def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu'):
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
"""
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = width / height
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / width
else:
resized_ori_h = width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / height
intrinsic = np.asarray([[cam_param.fx * width,
cam_param.fy * height,
cam_param.cx * width,
cam_param.cy * height]
for cam_param in cam_params], dtype=np.float32)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
plucker_embedding = plucker_embedding[None]
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
return plucker_embedding |