File size: 7,033 Bytes
26893dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention

from .fuser import xFuserLongContextAttention


def _get_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
    query = attn.to_q(hidden_states)
    key = attn.to_k(hidden_states)
    value = attn.to_v(hidden_states)

    encoder_query = encoder_key = encoder_value = None
    if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
        encoder_query = attn.add_q_proj(encoder_hidden_states)
        encoder_key = attn.add_k_proj(encoder_hidden_states)
        encoder_value = attn.add_v_proj(encoder_hidden_states)

    return query, key, value, encoder_query, encoder_key, encoder_value


def _get_qkv_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
    return _get_projections(attn, hidden_states, encoder_hidden_states)


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
    use_real: bool = True,
    use_real_unbind_dim: int = -1,
    sequence_dim: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        if sequence_dim == 2:
            cos = cos[None, None, :, :]
            sin = sin[None, None, :, :]
        elif sequence_dim == 1:
            cos = cos[None, :, None, :]
            sin = sin[None, :, None, :]
        else:
            raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.")

        cos, sin = cos.to(x.device), sin.to(x.device)

        if use_real_unbind_dim == -1:
            # Used for flux, cogvideox, hunyuan-dit
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, H, S, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
            # Used for Stable Audio, OmniGen, CogView4 and Cosmos
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, H, S, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out
    else:
        # used for lumina
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)


class FluxMultiGPUsAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
    query and key vectors, but does not include spatial normalization.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("FluxMultiGPUsAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: "FluxAttention",
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        text_seq_len: int = None,
    ) -> torch.FloatTensor:
        query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
            attn, hidden_states, encoder_hidden_states
        )

        query = query.unflatten(-1, (attn.heads, -1))
        key = key.unflatten(-1, (attn.heads, -1))
        value = value.unflatten(-1, (attn.heads, -1))

        query = attn.norm_q(query)
        key = attn.norm_k(key)
        
        if attn.added_kv_proj_dim is not None:
            encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
            encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
            encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))

            encoder_query = attn.norm_added_q(encoder_query)
            encoder_key = attn.norm_added_k(encoder_key)

            query = torch.cat([encoder_query, query], dim=1)
            key = torch.cat([encoder_key, key], dim=1)
            value = torch.cat([encoder_value, value], dim=1)

        # Apply rotary embeddings
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
            key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)

        if attn.added_kv_proj_dim is not None and text_seq_len is None:
            text_seq_len = encoder_query.shape[1]

        txt_query, txt_key, txt_value = query[:, :text_seq_len], key[:, :text_seq_len], value[:, :text_seq_len]
        img_query, img_key, img_value = query[:, text_seq_len:], key[:, text_seq_len:], value[:, text_seq_len:]

        half_dtypes = (torch.float16, torch.bfloat16)
        def half(x):
            return x if x.dtype in half_dtypes else x.to(torch.bfloat16)

        hidden_states = xFuserLongContextAttention()(
            None,
            half(img_query), half(img_key), half(img_value), dropout_p=0.0, causal=False,
            joint_tensor_query=half(txt_query) if txt_query is not None else None,
            joint_tensor_key=half(txt_key) if txt_key is not None else None,
            joint_tensor_value=half(txt_value) if txt_value is not None else None,
            joint_strategy='front',
        )

        # Reshape back
        hidden_states = hidden_states.flatten(2, 3)
        hidden_states = hidden_states.to(img_query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
                [encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
            )
            hidden_states = attn.to_out[0](hidden_states)
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states