Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,625 Bytes
26893dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import functools
import glob
import json
import math
import os
import types
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.cuda.amp as amp
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_version, logging,
scale_lora_layers, unscale_lora_layers)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from torch import nn
from .fuser import (get_sequence_parallel_rank,
get_sequence_parallel_world_size, get_sp_group,
init_distributed_environment, initialize_model_parallel,
xFuserLongContextAttention)
def apply_rotary_emb_qwen(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(1)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class QwenImageMultiGPUsAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
query and key vectors, but does not include spatial normalization.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
if encoder_hidden_states is None:
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
seq_txt = encoder_hidden_states.shape[1]
# Compute QKV for image stream (sample projections)
img_query = attn.to_q(hidden_states)
img_key = attn.to_k(hidden_states)
img_value = attn.to_v(hidden_states)
# Compute QKV for text stream (context projections)
txt_query = attn.add_q_proj(encoder_hidden_states)
txt_key = attn.add_k_proj(encoder_hidden_states)
txt_value = attn.add_v_proj(encoder_hidden_states)
# Reshape for multi-head attention
img_query = img_query.unflatten(-1, (attn.heads, -1))
img_key = img_key.unflatten(-1, (attn.heads, -1))
img_value = img_value.unflatten(-1, (attn.heads, -1))
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
# Apply QK normalization
if attn.norm_q is not None:
img_query = attn.norm_q(img_query)
if attn.norm_k is not None:
img_key = attn.norm_k(img_key)
if attn.norm_added_q is not None:
txt_query = attn.norm_added_q(txt_query)
if attn.norm_added_k is not None:
txt_key = attn.norm_added_k(txt_key)
# Apply RoPE
if image_rotary_emb is not None:
img_freqs, txt_freqs = image_rotary_emb
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
# Concatenate for joint attention
# Order: [text, image]
# joint_query = torch.cat([txt_query, img_query], dim=1)
# joint_key = torch.cat([txt_key, img_key], dim=1)
# joint_value = torch.cat([txt_value, img_value], dim=1)
half_dtypes = (torch.float16, torch.bfloat16)
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
joint_hidden_states = xFuserLongContextAttention()(
None,
half(img_query), half(img_key), half(img_value), dropout_p=0.0, causal=False,
joint_tensor_query=half(txt_query),
joint_tensor_key=half(txt_key),
joint_tensor_value=half(txt_value),
joint_strategy='front',
)
# Reshape back
joint_hidden_states = joint_hidden_states.flatten(2, 3)
joint_hidden_states = joint_hidden_states.to(img_query.dtype)
# Split attention outputs back
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
# Apply output projections
img_attn_output = attn.to_out[0](img_attn_output)
if len(attn.to_out) > 1:
img_attn_output = attn.to_out[1](img_attn_output) # dropout
txt_attn_output = attn.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output |